储能科学与技术 ›› 2015, Vol. 4 ›› Issue (4): 353-364.doi: 10.3969/j.issn.2095-4239.2015.04.003
胡飞, 林明翔, 徐凯琪, 闫勇, 王昊, 陈彬, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2015-06-18
出版日期:
2015-08-19
发布日期:
2015-08-19
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
胡飞(1989—),女,硕士研究生,研究方向为锂离子电池测试及老化衰减分析,E-mail:hufei2719@163.com
HU Fei, LIN Mingxiang, XU Kaiqi, YAN Yong, WANG Hao, CHEN Bin, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2015-06-18
Online:
2015-08-19
Published:
2015-08-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science从2015年4月1日至2015年5月31日上线的锂电池研究论文,共有1416篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料、三元材料和尖晶石材料的结构演变及掺杂和表面包覆对其循环寿命的影响。高容量的硅基负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,电解液添加剂、固态电解质、锂硫电池的论文也有多篇。理论模拟工作包括电极材料体相和界面结构以及电解质的输运性质,除了以材料为主的研究之外,电池模型和针对电池的失效分析、热安全分析的研究论文也有多篇。
中图分类号:
胡飞, 林明翔, 徐凯琪, 闫勇, 王昊, 陈彬, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2015.4.1—2015.5.31)[J]. 储能科学与技术, 2015, 4(4): 353-364.
HU Fei, LIN Mingxiang, XU Kaiqi, YAN Yong, WANG Hao, CHEN Bin, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (April 1,2015 to May 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(4): 353-364.
[1] Kim H,Kim M G,Jeong H Y, et al . A new coating method for alleviating surface degradation of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material:Nanoscale surface treatment of primary particles[J]. Nano Letters ,2015,15(3):2111-2119. [2] Yang C,Zhang Q,Ding W X, et al . Improving the electrochemical performance of layered lithium-rich cathode materials by fabricating a spinel outer layer with Ni 3+ [J]. Journal of Materials Chemistry A ,2015,3(14):7554-7559. [3] Wang S H,Li Y X,Wu J, et al . Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification[J]. Physical Chemistry Chemical Physics ,2015,17(15):10151-10159. [4] Mohanty D,Sefat A S,Payzant E A, et al . Unconventional irreversible structural changes in a high-voltage Li-Mn-rich oxide for lithium-ion battery cathodes[J]. Journal of Power Sources ,2015,283:423-428. [5] Lu P,Yan P F,Romero E, et al . Observation of electron-beam-induced phase evolution mimicking the effect of the charge-discharge cycle in Li-rich layered cathode materials used for Li ion batteries[J]. Chemistry of Materials ,2015,27(4):1375-1380. [6] Park J S,Mane A U,Elam J W, et al . Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO 2 for Li-ion batteries[J]. Chemistry of Materials ,2015,27(6):1917-1920. [7] Aurbach D,Srur-Lavi O,Ghanty C, et al. Studies of aluminum-doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 :Electrochemical behavior aging structural transformations and thermal characteristics[J]. Journal of the Electrochemical Society ,2015,162(6):A1014-A1027. [8] Alam M,Hanley T,Pang W K, et al . Comparison of the so-called CGR and NCR cathodes in commercial lithium-ion batteries using in situ neutron powder diffraction[J]. Powder Diffraction ,2014,29:S35-S39. [9] Chen C H,Pan C J,Su W N, et al . Operando X-ray diffraction and X-ray absorption studies of the structural transformation upon cycling excess Li layered oxide Li Li 1/18 Co 1/6 Ni 1/3 Mn 4/9 O 2 in Li ion batteries[J]. Journal of Materials Chemistry A ,2015,3(16):8613-8626. [10] Zhao E Y,Hu Z B,Xie L, et al . A study of the structure-activity relationship of the electrochemical performance and Li/Ni mixing of lithium-rich materials by neutron diffraction[J]. RSC Advances ,2015,5(39):31238-31244. [11] Hong S K,Mho S I,Yeo I H, et al . Structural and electrochemical characteristics of morphology-controlled Li[Ni 0.5 Mn 1.5 ]O 4 cathodes[J]. Electrochimica Acta ,2015,156:29-37. [12] Hwang B M,Kim S J,Lee Y W, et al . Truncated octahedral LiMn 2 O 4 cathode for high-performance lithium-ion batteries[J]. Materials Chemistry and Physics ,2015,158:138-143. [13] Ulvestad A,Clark J N,Singer A, et al . In situ strain evolution during a disconnection event in a battery nanoparticle[J]. Physical Chemistry Chemical Physics ,2015,17(16):10551-10555. [14] Wen W C,Wang X Y,Chen S H, et al . Design and preparation of spherical high voltage LiNi 0.5 Mn 1.5 O 4 with a novel concentration-gradient shell for lithium ion batteries[J]. Journal of Power Sources ,2015,281:85-93. [15] Monaco S,De Giorgio F,Da Col L, et al . Electrochemical performance of LiNi 0.5 Mn 1.5 O 4 composite electrodes featuring carbons and reduced graphene oxide[J]. Journal of Power Sources ,2015,278:733-740. [16] Xue L,Liao Y H,Yang L, et al . Improved rate performance of LiNi 0.5 Mn 1.5 O 4 cathode for lithium ion battery by carbon coating[J]. Ionics ,2015,21(5):1269-1275. [17] Boesenberg U,Falk M,Ryan C G, et al . Correlation between chemical and morphological heterogeneities in LiNi 0.5 Mn 1.5 O 4 spinel composite electrodes for lithium-ion batteries determined by micro-X-ray fluorescence analysis[J]. Chemistry of Materials ,2015,27(7):2525-2531. [18] Kim E Y,Lee B R,Yun G, et al . Effects of binder content on manganese dissolution and electrochemical performances of spinel lithium manganese oxide cathodes for lithium ion batteries[J]. Current Applied Physics ,2015,15(4):429-434. [19] Choi M,Kim H S,Lee Y M, et al . The electrochemical performance of Ni-added Li 3 V 2 (PO 4 ) 3 /graphene composites as cathode material for Li-ion batteries[J]. Materials Letters ,2015,145:83-86. [20] Enciso-Maldonado L,Dyer M S,Jones M D, et al . Computational identification and experimental realization of lithium vacancy introduction into the olivine LiMgPO 4 [J]. Chemistry of Materials ,2015,27(6):2074-2091. [21] McCalla E,Sougrati M T,Rousse G, et al . Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li 4 FeSbO 6 [J]. Journal of the American Chemical Society ,2015,137(14):4804-4814. [22] Bhosale M E,Krishnamoorthy K. Chemically reduced organic small-molecule-based lithium battery with improved efficiency[J]. Chemistry of Materials ,2015,27(6):2121-2126. [23] DeCaluwe S C,Dhar B M,Huang L, et al . Pore collapse and regrowth in silicon electrodes for rechargeable batteries[J]. Physical Chemistry Chemical Physics ,2015,17(17):11301-11312. [24] Hwang C,Kim T H,Cho Y G, et al . All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries[J]. Scientific Reports ,2015,5:doi: 10.1038/srep08623. [25] Li J C,Dudney N J,Xiao X C, et al . Asymmetric rate behavior of Si anodes for lithium-ion batteries:Ultrafast de-lithiation versus sluggish lithiation at high current densities[J]. Advanced Energy Materials ,2015,5(6):doi: 10.1002/aenm.201401627. [26] Wang B,Li X L,Luo B, et al . Approaching the downsizing limit of silicon for surface-controlled lithium storage[J]. Advanced Materials ,2015,27(9):1526-1532. [27] Iwabuchi Y,Yan J W. Laser sintering of silicon powder and carbon nanofibers for porous composite thick films[J]. Applied Physics Express ,2015,8(2):026501. [28] Goldshtein K,Freedman K,Schneier D, et al . Advanced multiphase silicon-based anodes for high-energy-density Li-ion batteries[J]. Journal of the Electrochemical Society ,2015,162(6):A1072-A1079. [29] Li W Y,Tang Y B,Kang W P, et al . Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes[J]. Small ,2015,11(11):1345-1351. [30] Li C L,Zhang P,Jiang Z Y. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder[J]. Electrochimica Acta ,2015,161:408-412. [31] Zhang Q L,Xiao X C,Zhou W D, et al . Toward high cycle efficiency of silicon-based negative electrodes by designing the solid electrolyte interphase[J]. Advanced Energy Materials ,2015,5(5),doi:10.1002/aenm.201401398. [32] Lu D P,Shao Y Y,Lozano T, et al . Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Advanced Energy Materials ,2015,5(3):doi: 10.1002/aenm. 201400993. [33] Park H,Kim M,Xu F, et al . In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors[J]. Journal of Power Sources ,2015,283:68-73. [34] Kim Y S,Jeong S K. Atomic force microscopy for understanding solvent cointercalation into graphite electrode in lithium secondary batteries[J]. Journal of Spectroscopy ,2015:1-6. [35] Uhlmann C,Illig J,Ender M, et al . In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources ,2015,279:428-438. [36] Haruta M,Shiraki S,Suzuki T, et al . Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries[J]. Nano Letters ,2015,15(3):1498-1502. [37] Takemoto K,Yamada H. Development of rechargeable lithium- bromine batteries with lithium ion conducting solid electrolyte[J]. Journal of Power Sources ,2015,281:334-340. [38] Sun B,Mindemark J,Edstrm K, et al . Realization of high performance polycarbonate-based Li polymer batteries[J]. Electrochemistry Communications ,2015,52:71-74. [39] Chen C C,Huang Y A,Zhang H, et al . Small amount of reduce graphene oxide modified Li 4 Ti 5 O 12 nanoparticles for ultrafast high-power lithium ion battery[J]. Journal of Power Sources ,2015,278:693-702. [40] Nelson K J,d'Eon G L,Wright A T B, et al . Studies of the effect of high voltage on the impedance and cycling performance of LiNi 0.4 Mn 0.4 Co 0.2 O 2 /graphite lithium-ion pouch cells[J]. Journal of the Electrochemical Society ,2015,162(6):A1046-A1054. [41] Jarry A,Gottis S,Yu Y S, et al . The formation mechanism of fluorescent metal complexes at the Li x Ni 0.5 Mn 1.5 O 4 - δ /carbonate ester electrolyte interface[J]. Journal of the American Chemical Society ,2015,137(10):3533-3539. [42] Lin H B,Huang W Z,Rong H B, et al . Improving cyclic stability and rate capability of LiNi 0.5 Mn 1.5 O 4 cathode via protective film and conductive polymer formed from thiophene[J]. Journal of Solid State Electrochemistry ,2015,19(4):1123-1132. [43] Grande L,Von Zamory J,Koch S L, et al . Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes[J]. ACS Applied Materials & Interfaces ,2015,7(10):5950-5958. [44] Xia L,Xia Y G,Liu Z P. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources ,2015,278:190-196. [45] Yang J P,Zhang Y F,Zhao P, et al . In-situ coating of cathode by electrolyte additive for high-voltage performance of lithium-ion batteries[J]. Electrochimica Acta ,2015,158:202-208. [46] Yim T,Woo S G,Lim S H, et al . 5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive[J]. Journal of Materials Chemistry A ,2015,3(11):6157-6167. [47] Harding J R,Amanchukwu C V,Hammond P T, et al . Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries[J]. Journal of Physical Chemistry C ,2015,119(13):6947-6955. [48] Moon H,Mandai T,Tatara R, et al . Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries[J]. Journal of Physical Chemistry C ,2015,119(8):3957-3970. [49] Lu Y Y,Tu Z Y,Shu J, et al . Stable lithium electrodeposition in salt-reinforced electrolytes[J]. Journal of Power Sources ,2015,279:413-418. [50] Lazar M L,Lucht B L. Carbonate free electrolyte for lithium ion batteries containing gamma-butyrolactone and methyl butyrate[J]. Journal of the Electrochemical Society ,2015,162(6):A928-A934. [51] Harrup M K,Rollins H W,Jamison D K, et al . Unsaturated phosphazenes as co-solvents for lithium-ion battery electrolytes[J]. Journal of Power Sources ,2015,278:794-801. [52] Babu G,Ababtain K,Ng K Y S, et al . Electrocatalysis of lithium polysulfides:Current collectors as electrodes in Li/S battery configuration[J]. Scientific Reports ,2015,5:doi: 10.1038/ srep08763. [53] Demir-Cakan R. Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries[J]. Journal of Power Sources ,2015,282:437-443. [54] Dirlam P T,Simmonds A G,Kleine T S, et al . Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li-S batteries[J]. RSC Advances ,2015,5(31):24718-24722. [55] Kim H,Wu F X,Lee J T, et al . In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes[J]. Advanced Energy Materials ,2015,5(6):doi: 10.1002/aenm.201401792. [56] Liang X,Garsuch A,Nazar L F. Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition ,2015,54(13):3907-3911. [57] Yan N,Yang X F,Zhou W, et al . Fabrication of a nano-Li + -channel interlayer for high performance Li-S battery application[J]. RSC Advances ,2015,5(33):26273-26280. [58] Cai W L,Li G R,He F, et al. A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries[J]. Journal of Power Sources ,2015,283:524-529. [59] Wang L,Liu J Y,Haller S, et al . A scalable hybrid separator for a high performance lithium-sulfur battery[J]. Chemical Communications ,2015,51(32):6996-6999. [60] Zhang C Y,Wang W K,Wang A B, et al . Effect of carbon core grafting on the properties of carbon-sulfur composite for lithium/sulfur battery[J]. Journal of the Electrochemical Society ,2015,162(6):A1067-A1071. [61] Eroglu D,Zavadil K R,Gallagher K G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery[J]. Journal of the Electrochemical Society ,2015,162(6):A982-A990. [62] Huang J Q,Zhuang T Z,Zhang Q, et al . Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano ,2015,9(3):3002-3011. [63] Sacci R L,Black J M,Balke N, et al . Nanoscale imaging of fundamental Li battery chemistry:Solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters[J]. Nano Letters ,2015,15(3):2011-2018. [64] Ayache M,Lux S F,Kostecki R. IR near-field study of the solid electrolyte interphase on a tin electrode[J]. Journal of Physical Chemistry Letters ,2015,6(7):1126-1129. [65] Arai J,Okada Y,Sugiyama T, et al . In situ solid state Li-7 NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. Journal of the Electrochemical Society ,2015,162(6):A952-A958. [66] He M L,Castel E,Laumann A, et al . In situ gas analysis of Li 4 Ti 5 O 12 based electrodes at elevated temperatures[J]. Journal of the Electrochemical Society ,2015,162(6):A870-A876. [67] Zielke L,Hutzenlaub T,Wheeler D R, et al . Three-phase multiscale modeling of a LiCoO 2 cathode:Combining the advantages of FIB-SEM imaging and X-ray tomography[J]. Advanced Energy Materials ,2015,5(5):doi: 10.1002/aenm.201401612. [68] Kramer Y,Birkenmaier C,Feinauer J, et al . A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells[J]. Chemistry-A European Journal ,2015,21(16):6062-6065. [69] Bock D C,Tappero R V,Takeuchi K J, et al . Mapping the anode surface-electrolyte interphase:Investigating a life limiting process of lithium primary batteries[J]. ACS Applied Materials & Interfaces ,2015,7(9):5429-5437. [70] Finegan D P,Scheel M,Robinson J B, et al . In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications ,2015,6:doi:10.1038/ncomms7924. [71] Matasso A,Wong D,Wetz D, et al . Effects of high-rate cycling on the bulk internal pressure rise and capacity degradation of commercial LiCoO 2 cells[J]. Journal of the Electrochemical Society ,2015,162(6):A885-A891. [72] Barai A,Chouchelamane G H,Guo Y, et al . A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy[J]. Journal of Power Sources ,2015,280:74-80. [73] Illig J,Ender M,Weber A, et al . Modeling graphite anodes with serial and transmission line models[J]. Journal of Power Sources ,2015,282:335-347. [74] Dogan F,Long B R,Croy J R, et al . Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes[J]. Journal of the American Chemical Society ,2015,137(6):2328-2335. [75] Cordoba-Arenas A,Onori S,Rizzoni G. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management[J]. Journal of Power Sources ,2015,279:791-808. [76] Hua Y,Cordoba-Arenas A,Warner N, et al . A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control[J]. Journal of Power Sources ,2015,280:293-312. [77] Liu X,Stoliarov S I,Denlinger M, et al . Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources ,2015,280:516-525. [78] Damay N,Forgez C,Bichat M P, et al . Thermal modeling of large prismatic LiFePO 4 /graphite battery, coupled thermal and heat generation models for characterization and simulation[J]. Journal of Power Sources ,2015,283:37-45. [79] Baek K W,Hong E S,Cha S W. Capacity fade modeling of a lithium-ion battery for electric vehicles[J]. International Journal of Automotive Technology ,2015,16(2):309-315. [80] Cordoba-Arenas A,Onori S,Guezennec Y, et al. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes[J]. Journal of Power Sources ,2015,278:473-483. [81] Feng T H,Yang L,Zhao X W, et al . Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction[J]. Journal of Power Sources ,2015,281:192-203. [82] Fu R J,Choe S Y,Agubra V, et al . Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions[J]. Journal of Power Sources ,2015,278:506-521. [83] Samadani E,Farhad S,Scott W, et al . Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests[J]. Electrochimica Acta ,2015,160:169-177. [84] Yue J L,Zhou Y N,Shi S Q, et al . Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe 2 (MoO 4 ) 3 [J]. Scientific Reports ,2015,5:doi: 10.1038/srep08810. [85] Basu S,Patil R S,Ramachandran S, et al . Non-isothermal electrochemical model for lithium-ion cells with composite cathodes[J]. Journal of Power Sources ,2015,283:132-150. [86] Bauer M,Guenther C,Kasper M, et al . Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss[J]. Journal of Power Sources ,2015,283:494-504. [87] Burns J C,Stevens D A,Dahn J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society ,2015,162(6):A959-A964. [88] Devie A,Dubarry M,Liaw B Y. Overcharge study in Li 4 Ti 5 O 12 based lithium-ion pouch cell I, quantitative diagnosis of degradation modes[J]. Journal of the Electrochemical Society ,2015,162(6):A1033-A1040. [89] Ekstrom H,Lindbergh G. A model for predicting capacity fade due to SEI graphite/LiFePO 4 cell[J]. Journal of the Electrochemical Society ,2015,162(6):A1003-A1007. [90] Lee Y J,Choi H Y,Ha C W, et al . Cycle life modeling and the capacity fading mechanisms in a graphite/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell[J]. Journal of Applied Electrochemistry ,2015,45(5):419-426. [91] Senyshyn A,Muhlbauer M J,Dolotko O, et al . Low-temperature performance of Li-ion batteries:The behavior of lithiated graphite[J]. Journal of Power Sources ,2015,282:235-240. [92] Barnes T A,Kaminski J W,Borodin O, et al . Ab lnitio characterization of the electrochemical stability and solvation properties of condensed-phase ethylene carbonate and dimethyl carbonate mixtures[J]. Journal of Physical Chemistry C ,2015,119(8):3865-3880. [93] Lee S H,Moon J S,Lee M S, et al . Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries[J]. Journal of Power Sources ,2015,281:77-84. [94] Schmidt W,Bottke P,Sternad M, et al . Small change-great effect:Steep increase of Li ion dynamics in Li 4 Ti 5 O 12 at the early stages of chemical Li insertion[J]. Chemistry of Materials ,2015,27(5):1740-1750. [95] Suzuki K,Barbiellini B,Orikasa Y, et al . Extracting the redox orbitals in Li battery materials with high-resolution X-ray compton scattering spectroscopy[J]. Physical Review Letters ,2015,114(8):doi: 10.1103/PhysRevLett.114.087401. [96] Han B H,Qian D N,Risch M, et al . Role of LiCoO 2 surface terminations in oxygen reduction and evolution kinetics[J]. Journal of Physical Chemistry Letters ,2015,6(8):1357-1362. [97] Higa K,Srinivasan V. Stress and strain in silicon electrode models[J]. Journal of the Electrochemical Society ,2015,162(6):A1111-A1122. [98] Kazemiabnavi S,Dutta P,Banerjee S. A density functional theory based study of the electron transfer reaction at the cathode-electrolyte interface in lithium-air batteries[J]. Physical Chemistry Chemical Physics ,2015,17(17):11740-11751. [99] Yang G C,Shi S Q,Yang J H, et al . Insight into the role of Li 2 S 2 in Li-S batteries:A first-principles study[J]. Journal of Materials Chemistry A ,2015,3(16):8865-8869. [100] Kim J C,Seo D H,Chen H L, et al . the effect of antisite disorder and particle size on Li intercalation kinetics in monoclinic LiMnBO 3 [J]. Advanced Energy Materials ,2015,5(8):doi: 10.1002/aenm.201401916.. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||