储能科学与技术 ›› 2017, Vol. 6 ›› Issue (2): 223-236.doi: 10.12028/j.issn.2095-4239.2016.0096

• 进展与评述 • 上一篇    下一篇

预锂化技术在能源存储中的应用

明  海1,2,明  军3,4,邱景义1,2,张文峰1,2,张松通1,2,曹高萍1,2   

  1. 1防化研究院,北京100191;2先进化学蓄电技术与材料北京市重点实验室,防化研究院,北京 100191;3阿卜杜拉国王科技大学,沙特阿拉伯;4稀土资源利用国家重点实验室,中国科学院长春应用化学研究所,吉林 长春 130022
  • 收稿日期:2016-11-29 修回日期:2017-01-03 出版日期:2017-03-01 发布日期:2017-03-01
  • 通讯作者: 曹高萍,研究员,研究方向为化学电源与能源材料,E-mail:caogaoping@126.com。
  • 作者简介:明海(1986—),男,博士,从事军用电源动态分析,E-mail:lunaticmh@163.com
  • 基金资助:
    中国人民解放军陆军装备部资助项目。

Applications of pre-lithiation technologies in energy storage

MING Hai1,2, MING Jun3, QIU Jingyi1,2, ZHANG Wenfeng1,2, ZHANG Songtong1,2, CAO Gaoping1,2   

  1. 1Research Institute of Chemical Defense, Beijing 100191, China; 2Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Research Institute of Chemical Defense, Beijing 100191, China; 3King Abdullah University of Science & Technology, Kingdom of Saudi Arabia; 4State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
  • Received:2016-11-29 Revised:2017-01-03 Online:2017-03-01 Published:2017-03-01

摘要: 简述了预锂化技术在锂离子、锂硫/锂空气、锂离子电容器及相关能源存储技术中的最新研究进展。预锂化技术主要包括原位掺杂、接触反应、电化学和化学锂化等。该方法可改善锂离子电池高比容负极材料的首次不可逆容量、锂硫/空气电池负极的锂损耗和安全性、锂离子电容器负极的锂补偿等问题,提升能源存储系统的性能。然而,预锂化后电极表面的固体电解质界面膜形成、枝晶生长、电解液分解以及电极内部热效应等关键问题对系统的能量/功率密度、寿命和安全性能也有重要的影响。只有充分认识和了解上述相互作用机制,并实现预锂化过程的简化与锂化程度的精准控制,才能确保预锂化电极技术的大规模使用。因此,系统地分析梳理预锂化技术在能源存储技术中的应用情况,有助于全面认知预锂化技术的发展、研究和应用现状,也可为相应及其它相关电源体系(钠电池等)的进一步发展提供科学参考和理论依据。

关键词: 预锂化, 锂离子电池, 锂硫电池, 锂空气电池, 锂离子电容器

Abstract: The recent development of pre-lithiation technologies in lithium-ion battery, lithium-sulfur battery, lithium-air battery, lithium-ion capacitor and other kind of new energy storage systems were summarized. The pre-lithiation strategies mainly include in-situ lithium-doping, interfacial contact reaction with lithium-metal, electrochemical and chemical lithiation, etc. It can efficiently ameliorate several challenging problems: (i) compensating the initially high irreversible capacity of anode in lithium-ion battery; (ii) solving the lithium consumption and safety issue of metallic lithium anode in lithium-sulfur/air battery; (iii) addressing the anodic lithium compensation in lithium-ion capacitors; thereby giving rise to enhanced electrochemical performances. However, a series of key issues, including the formation of solid electrolyte interface film on the electrode surface, growth of lithium-dendrite, electrolyte decomposition, and electrode internal-heating after the pre-lithiation, may influence on the energy/power density, cycle life and safety of energy storage systems. Full knowledge and understand of their correlations and interaction mechanism is strongly demanded to seek a simplified strategy for an accurate control in lithium compensation and then guarantee its scalable application. Therefore, it is rather significant to retrieve relevant literatures and summarize the pre-lithiation applications in energy storage systems for understanding the progress more comprehensively, thereby providing academic reference and theoretical basis for the further development in relevant and other kind of power system (e.g., sodium battery).

Key words: pre-lithiation, lithium-ion battery, lithium-sulfur battery, lithium-air battery, lithium-ion capacitor