[1] Dunn B,Kamath H,Tarascon J M. Electrical energy storage for the grid:A battery of choices[J]. Science ,2011,334(6058):928-935. [2] Thackeray M M,Wolverton C,Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energ. Environ. Sci. ,2012,5(7):7854-7863. [3] Tarascon J M. Key challenges in future Li-battery research[J]. Philos. T Roy. Soc. A ,2010,368(1923):3227-3241. [4] Amatucci G G,Pereira N. Fluoride based electrode materials for advanced energy storage devices[J]. J. Fluorine Chem. ,2007,128(4):243-262. [5] Zhou M J,Zhao L W,Okada S,Yamaki J. Thermal characteristics of a FeF 3 cathode via conversion reaction in comparison with LiFePO 4 [J]. J. Power Sources ,2011,196(19):8110-8115. [6] Zhou M J,Zhao L W,Kitajou A,Okada S. Mechanism on exothermic heat of FeF 3 cathode in Li-ion batteries[J]. J. Power Sources ,2012,203:103-108. [7] Zhou M J,Zhao L W,Doi T,Okada S. Thermal stability of FeF 3 cathode for Li-ion batteries[J]. J. Power Sources ,2010,195(15):4952-4956. [8] Zhou M J,Zhao L W,Okada S,Yamaki J. Quantitative studies on thermal stability of a FeF 3 cathode in methyl difluoroacetate-based electrolyte for Li-ion batteries[J]. J. Power Sources ,2014,253:74-79. [9] Li R F,Wu S Q,Yang Y,Zhu Z Z. Structural and electronic properties of Li-ion battery cathode material FeF 3 [J]. J. Phys. Chem. C ,2010,114(39):16813-16817. [10] Yamakawa N,Jiang M,Key B,Grey C P. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a li-ion battery:A solid-state NMR, X-ray diffraction, and pair distribution function analysis study[J]. J. Am. Chem. Soc ,2009,131(30):10525-10536. [11] Li L S,Meng F,Jin S. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism[J]. Nano Lett .,2012,12(11):6030-6037. [12] Wang F,Robert R,Chernova N A,Pereira N. Conversion reaction mechanisms in lithium ion batteries:Study of the binary metalfluoride electrodes[J]. J. Am. Chem. Soc .,2011,133(46):18828-18836. [13] Rangan S,Thorpe R,Bartynski R A,Sina M. Conversion reaction of FeF 2 thinfilms upon exposure to atomic lithium[J]. J. Phys. Chem. C ,2012,116(19):10498-10503. [14] Wang F,Yu H C,Chen M H,Wu L J. Tracking lithium transport and electrochemical reactions in nanoparticles[J]. Nat. Commun .,2012,3(6):542-555. [15] Ma Y,Garofalini S H. Atomistic insights into the conversion reaction in iron fluoride:A dynamically adaptive force field approach[J]. J. Am. Chem. Soc .,2012,134(19):8205-8211. [16] Liu P,Vajo J J,Wan J S,Li W. Thermodynamics and kinetics of the Li/FeF 3 reaction by electrochemical analysis[J]. J. Phys. Chem. C ,2012,116(10):6467-6473. [17] Lachter A,Salardenne J,Barrière A S. Optical absorption study of iron trifluoride thin films[J]. Physica Status Solidi B ,1978,90(1):147-150. [18] Lopez-Moreno S,Romero A H,Mejia-Lopez J,Munoz A. First-principles study of electronic, vibrational, elastic, and magnetic properties of FeF 2 as a function of pressure[J]. Phys. Rev. B ,2012,85(13):134110. [19] Ortiz S R,Volkov V,Schmid S,Kuo F L. Microstructure and electronic band structure of pulsed laser deposited iron fluoride thin film for battery electrodes[J]. ACS Appl. Mat. Interfaces ,2013,5(7):2387-2391. [20] Li C L,Gu L,Tong J W,Tsukimoto S. A mesoporous iron-based fluoride cathode of tunnel structure for rechargeable lithium batteries[J]. Adv. Funct. Mater. ,2011,21(8):1391-1397. [21] Li C L,Gu L,Tong J W,Maier J. Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder:A case study on iron fluoride nanoparticles[J]. ACS Nano ,2011,5(4):2930-2938. [22] Li C L,Yin C L,Gu L,Dinnebier R E. An FeF 3 ·0.5H 2 O polytype:A microporous framework compound with intersecting tunnels for Li and Na batteries[J]. J. Am. Chem. Soc .,2013,135(31):11425-11428. [23] Chevrier V L,Hautier G,Ong S P,Doe R E. First-principles study of iron oxyfluorides and lithiation of FeOF[J]. Phys. Rev. B ,2013,87(9):269-275. [24] Wiaderek K M,Borkiewicz O J,Castillo-Martinez E,Robert R. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy[J]. J. Am. Chem. Soc .,2013,135(10):4070-4078. [25] Badway F,Pereira N,Cosandey F,Amatucci G G. Carbon-metal fluoride nanocomposites-structure and electrochemistry of FeF 3 :C[J]. J. Electrochem. Soc .,2003,150(9):A1209-A1218. [26] Lu Y,Wen Z Y,Rui K,Wu X W. Worm-like mesoporous structured iron-based fluoride:Facile preparation and application as cathodes for rechargeable lithium ion batteries[J]. J. Power Sources ,2013,244(4):306-311. [27] Li C L,Gu L,Tsukimoto S,Van Aken P A. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries[J]. Adv. Mater .,2010,22(33):3650-3654. [28] Lu Y,Wen Z Y,Jin J,Rui K. Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries[J]. Phys. Chem. Chem. Phys .,2014,16(18):8556-8562. [29] Li B J,Cheng Z J,Zhang N Q,Sun K N. Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries[J]. Nano Energy ,2014,4(3):7-13. [30] Chu Q X,Xing Z C,Tian J Q,Ren X B. Facile preparation of porous FeF 3 nanospheres as cathode materials for rechargeable lithium-ion batteries[J]. J. Power Sources ,2013,236:188-191. [31] Liu J,Liu W,Ji S M,Wan Y L. Iron fluoride hollow porous microspheres: Facile solution- phase synthesis and their application for Li-ion battery cathodes[J]. Chem. Eur. J .,2014,20(19):5815-5820. [32] Ma D L,Cao Z Y,Wang H G,Huang X L. Three-dimensionally ordered macroporous FeF 3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries[J]. Energ. Environ. Sci .,2012,5(9):8538-8542. [33] Zhang Y L,Wang L,Li J J,Wen L. A one-pot approach towards FeF 2 -carbon core-shell composite and its application in lithium ion batteries[J]. J. Alloy Comp .,2014,606(23):226-230. [34] Armstrong M J,Panneerselvam A,O'Regan C,Morris M A. Supercritical-fluid synthesis of FeF 2 and CoF 2 Li-ion conversion materials[J]. J. Mater. Chem. A ,2013,1(36):10667-10676. [35] Kim S W,Seo D H,Gwon H,Kim J. Fabrication of FeF 3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries[J]. Adv. Mater .,2010,22(46):5260-5264. [36] Li C L,Mu X K,van Aken P A,Maier J. A high-capacity cathode for lithium batteries consisting of porous microspheres of highly amorphized iron fluoride densified from its open parent phase[J]. Adv. Energy Mater .,2013,3(1):113-119. [37] Zhang Y L,Wang L,Li J J,He X M. Electrochemical performance of FeF 3 ·0.33H 2 O/MWCNTs composite cathode synthesized by solvothermal process[J]. J. New Mat. Electrochem. Systems ,2015,18(2). [38] Liu J,Wan Y L,Liu W,Ma Z S. Mild and cost-effective synthesis of iron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes[J]. J. Mater. Chem. A ,2013,1(6):1969-1975. [39] Chu Q X,Xing Z C,Ren X B,Asiri A M. Reduced graphene oxide decorated with FeF 3 nanoparticles:Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries[J]. Electrochim. Acta ,2013,111:80-85. [40] Zhao X,Hayner C M,Kung M C,Kung H H. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries[J]. Chem. Commun .,2012,48(79):9909-9911. [41] Di Carlo L,Conte D E,Kemnitz E,Pinna N. Microwave-assisted fluorolytic sol-gel route to iron fluoride nanoparticles for Li-ion batteries[J]. Chem. Commun. ,2014,50(4):460-462. [42] Ma R G,Lu Z G,Wang C D,Wang H E. Large-scale fabrication of graphene-wrapped FeF 3 nanocrystals as cathode materials for lithium ion batteries[J]. Nanoscale .,2013,5(14):6338-6343. [43] Ding B,Yuan C Z,Shen L F,Xu G Y. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. J. Mater. Chem. A ,2013, 1(14):1096-1101. [44] Li B J,Zhang N Q,Sun K N. Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries[J]. Small ,2014,10(10):2039-2046. [45] Jung H,Shin J,Chae C,Lee J K. FeF 3 /Ordered mesoporous carbon (OMC) nanocomposites for lithium ion batteries with enhanced electrochemical performance[J]. J. Phys. Chem. C ,2013,117(29):14939-14946. [46] Ma R G,Wang M,Tao P P,Wang Y. Fabrication of FeF 3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries[J]. J. Mater. Chem. A ,2013,1(47):15060-15067. [47] Li T,Li L,Cao Y L,Ai X P. Reversible three-electron redox behaviors of FeF 3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries[J]. J. Phys. Chem. C ,2010,114(7):3190-3195. [48] Tan J L,Liu L,Hu H,Yang Z H. Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries[J]. J. Power Sources ,2014,251(2):75-84. [49] Pereira N,Badway F,Wartelsky M,Gunn S. Iron oxyfluorides as high capacity cathode materials for lithium batteries[J]. J. Electrochem. Soc. ,2009,156(6):A407-A416. [50] Kitajou A,Komatsu H,Nagano R,Okada S. Synthesis of FeOF using roll-quenching method and the cathode properties for lithium-ion battery[J]. J. Power Sources ,2013,243(6):494-498. [51] Xu X P,Chen S,Shui M,Xu L X. One step solid state synthesis of FeF 3 ·0.33H 2 O/C nano-composite as cathode material for lithium-ion batteries[J]. Ceram. Int .,2014,40(2):3145-3148. [52] Plitz I,Badway F,Al-Sharab J,DuPasquier A. Structure and electrochemistry of carbon-metal fluoride nanocomposites fabricated by solid-state redox conversion reaction[J]. J. Electrochem. Soc .,2005,152(2):A307-A315. [53] Reddy M A,Breitung B,Chakravadhanula V S K,Wall C. CF x derived carbonFeF 2 nanocomposites for reversible lithium storage[J]. Adv. Energy Mater .,2013,3(3):308-313. [54] Liu L,Zhou M,Wang X Y,Yang Z H. Synthesis and electrochemical performance of spherical FeF 3 /ACMB composite as cathode material for lithium-ion batteries[J]. J. Mater. Sci .,2012,47(4):1819-1824. [55] Wu W,Wang Y,Wang X Y,Chen Q Q. Structure and electrochemical performance of FeF 3 /V 2 O 5 composite cathode material for lithium-ion battery[J]. J. Alloy Comp .,2009,486(1-2):93-96. [56] Wu W,Wang X Y,Wang X,Yang S Y. Effects of MoS 2 doping on the electrochemical performance of FeF 3 cathode materials for lithium-ion batteries[J]. Mater. Lett .,2009,63(21):1788-1790. |