[1] SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al. Effect of internal void placement on the heat transfer performance—Encapsulated phase change material for energy storage[J]. Renewable Energy, 2015, 78: 438-447.
[2] KARKRI M, LACHHEB M, NÓGELLOVÁ Z, et al. Thermal properties of phase-change materials based on high-density polyethylene filled with micro-encapsulated paraffin wax for thermal energy storage[J]. Energy and Buildings, 2015, 88: 144-152.
[3] CAO L, TANG Y, FANG G. Preparation and properties of shape- stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage[J]. Energy, 2015, 80: 98-103.
[4] MEMON S A, CUI H Z, ZHANG H, et al. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete[J]. Applied Energy, 2015, 139: 43-55.
[5] LIU S, YANG H. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage[J]. Applied Clay Science, 2014, 101: 277-281.
[6] PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123.
[7] ZENG J L, GAN J, ZHU F R, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 127: 122-128.
[8] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage[J]. Applied Energy, 2014, 135: 339-349.
[9] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2014, 88: 206-213.
[10] SHARMA A, SHUKLA A, CHEN C R, et al. Development of phase change materials (PCMs) for low temperature energy storage applications[J]. Sustainable Energy Technologies and Assessments, 2014, 7: 17-21.
[11] NITHYANANDAM K, PITCHUMANI R. Optimization of an encapsulated phase change material thermal energy storage system[J]. Solar Energy, 2014, 107: 770-788.
[12] MURRAY R E, GROULX D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1. Consecutive charging and discharging[J]. Renewable Energy, 2014, 62: 571-581.
[13] SONG S, DONG L, ZHANG Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385-389.
[14] MURRAY R E, GROULX D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2. Simultaneous charging and discharging[J]. Renewable Energy, 2014, 63: 724-734.
[15] TUMIRAH K, HUSSEIN M Z, ZULKARNAIN Z, et al. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage[J]. Energy, 2014, 66: 881-890.
[16] FANG X, FAN L W, DING Q, et al. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80: 103-109.
[17] AADMI M, KARKRI M, El HAMMOUTI M. Heat transfer characteristics of thermal energy storage of a composite phase change materials: umerical and experimental investigations[J]. Energy, 2014, 72: 381-392.
[18] NKWETTA D N, HAGHIGHAT F. Thermal energy storage with phase change material— A state-of-the art review[J]. Sustainable Cities and Society, 2014, 10: 87-100.
[19] ZHANG N, YUAN Y, YUAN Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-Stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110: 64-70.
[20] QI G Q, LIANG C L, BAO R Y, et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materials and Solar Cells, 2014, 123: 171-177.
[21] CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737.
[22] LIU C, GROULX D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system[J]. International Journal of Thermal Sciences, 2014, 82: 100-110.
[23] TANG X, LI W, ZHANG X, et al. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage[J]. Energy, 2014, 68: 160-166.
[24] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110: 163-172.
[25] WANG W W, WANG L B, HE Y L. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit[J]. Applied Energy, 2015, 138: 169-182.
[26] VERDIER D, FERRIÈRE A, FALCOZ Q, et al. Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver[J]. Energy Procedia, 2014, 49: 1044-1053.
[27] BARRENECHE C, NAVARRO H, SERRANO S, et al. New database on phase change materials for thermal energy storage in buildings to help PCM selection[J]. Energy Procedia, 2014, 57: 2408-2415.
[28] LÓPEZ-SABIRÓN A M, ROYO P, FERREIRA V J, et al. Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption[J]. Applied Energy, 2014, 135: 616-624.
[29] FANG Y, LIU X, LIANG X, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556.
[30] HAURIE L, MAZO J, DELGADO M, et al. Fire behaviour of a mortar with different mass fractions of phase change material for use in radiant floor systems[J]. Energy and Buildings, 2014, 84: 86-93.
[31] JEON J, JEONG S G, LEE J H, et al. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system[J]. Solar Energy Materials and Solar Cells, 2012, 101: 51-56.
[32] ZHOU G, HE J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes[J]. Applied Energy, 2015, 138: 648-660.
[33] JIN X, ZHANG X. Thermal analysis of a double layer phase change material floor[J]. Applied Thermal Engineering, 2011, 31(10): 1576-1581.
[34] 吴秀芬. 一种封装蓄能材料用于地板辐射采暖的理论与实验研究[D]. 北京: 北京建筑工程学院, 2006.
WU Xiufen. The theoretical analysis & experimental research on floor radiant heating system with a kind of enclosed phase change material[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2006.
[35] 何静. 相变材料蓄能式毛细管网地板辐射采暧热特性研究[D]. 北京: 华北电力大学, 2012.
HE Jing. Thermal characteristics of radiant floor heating with energy storage capillary network with phase change material[D]. Beijing: North China Electric Power University, 2012.
[36] 叶宏, 王军, 庄双勇, 等. 定形相变贮能式地板辐射采暖系统的实验研究[J]. 太阳能学报, 2004, 25(5): 651-656.
YE Hong, WANG Jun, ZHUANG Shuangyong,et al. Experimental study on the radiant floor heating system utilizing form-stable PCM as the thermal mass[J]. Acta Energiae Solaris Sinica, 2004, 25(5): 651-656.
|