[1] PARRADO C, MARZO A, FUENTEALBA E, et al. 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 505-514.
[2] 杨敏林, 杨晓西, 林汝谋. 太阳能热发电技术与系统[J]. 热能动力工程, 2008, 23(3): 221-228.
YANG M L, YANG X X, LIN R M. Solar energy-based thermal power generation technologies and their systems[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(3): 221-228.
[3] DINTER F, GONZALEZ D M. Operability, reliability and economic benefits of CSP with thermal energy storage: First year of operation of ANDASOL 3[J]. Energy Procedia, 2014, 49: 2472-2481.
[4] TORRAS S, PÉREZ-SEGARRA C D, RODRÍGUEZ I, et al. Parametric study of two-tank TES systems for CSP plants[J]. Energy Procedia, 2015, 69: 1049-1058.
[5] ARCE P, MEDRANO M, GIL A, et al. Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe[J]. Applied Energy, 2011, 88(8): 2764-2774.
[6] ANGELINI G, LUCCHINI A, MANZOLINI G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energy Procedia, 2014, 49: 694-704.
[7] 张雅文. 太阳能电站双罐式熔盐蓄热系统的优化设计及研究[D]. 武汉: 华中科技大学, 2012.
ZHANG Y W. Study and optimal design on two-tank molten salt heat storage system in solar power plants[D]. Wuhan: Huazhong University of Science & Technology, 2012.
[8] PRIETO C, OSUNA R, FERNÁNDEZ A I, et al. Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences[J]. Renewable Energy, 2016, 99: 852-866.
[9] RODRÍGUEZ-GARCÍA M M, HERRADOR-MORENO M, MOYA E Z. Lessons learnt during the design, construction and start-up phase of a molten salt testing facility[J]. Applied Thermal Engineering, 2014, 62(2): 520-528.
[10] 崔武军, 吴玉庭, 熊亚选, 等. 低熔点熔盐蓄热罐内温度分布与散热损失实验[J]. 化工学报, 2014, 65(s1): 162-167.
CUI Wujun, WU Yuting, XIONG Yaxuan, et al. Temperature distribution and heat loss experiments of low melting point molten salt heat storage tank[J]. CIESC Journal, 2014, 65(s1): 162-167.
[11] 王康, 陆建峰, 丁静, 等. 槽式太阳能系统导热油储罐的散热特性[J]. 兰州理工大学学报, 2013, 39(4): 55-58.
WANG Kang, LU Jianfeng, DING Jing, et al. Heat-dissipation characteristics of storage tank for heat conducting oil in trough solar energy system[J]. Journal of Lanzhou University of Technology, 2013, 39(4): 55-58.
[12] PACHECO J E, BRADSHAW R W, DAWSON D B, et al. Final test and evaluation results from the Solar Two project[R]. Albuquerque: Sandia National Laboratories, 2002.
[13] ZAVERSKY F, GARCÍA-BARBERENA J, SÁNCHEZ M, et al. Transient molten salt two-tank thermal storage modeling for CSP performance simulations[J]. Solar Energy, 2013, 93: 294-311.
[14] RODRÍGUEZ I, PÉREZ-SEGARRA C D, LEHMKUHL O, et al. Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants[J]. Applied Energy, 2013, 109: 402-414.
[15] PRIETO C, OSUNA R, FERNÁNDEZ A I, et al. Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction[J]. Renewable Energy, 2016, 94: 175-185.
[16] SUÁREZ C, IRANZO A, PINO F J, et al. Transient analysis of the cooling process of molten salt thermal storage tanks due to standby heat loss[J]. Applied Energy, 2015, 142: 56-65.
[17] FERRI R, CAMMI A, MAZZEI D. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications[J]. International Journal of Thermal Sciences, 2008, 47(12): 1676-1687.
[18] 中华人民共和国国家质量监督检验检疫总局, 中华人民共和国建设部. 工业设备及管道绝热工程设计规范: GB 50264—97[S]. 北京: 中国标准出版社, 1997.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Construction of the People's Republic of China. Design code for insulation engineering of industrial equipment and pipe: GB 50264—97[S]. Beijing: Standards Press of China, 1997.
|