储能科学与技术 ›› 2018, Vol. 7 ›› Issue (1): 108-.doi: 10.12028/j.issn.2095-4239.2017.0128

• 研究及进展 • 上一篇    下一篇

超级电容器大电流充放电温度场和安全性分析

李 宇,杜建华,皇甫趁心,涂 然,张认成   

  1. 华侨大学机电及自动化学院,福建 厦门361021
  • 收稿日期:2017-07-22 修回日期:2017-08-13 出版日期:2018-01-01 发布日期:2018-01-01
  • 通讯作者: 杜建华,副教授,主要从事新能源动力电池系统安全状态监测技术及消防技术方面的研究,E-mail:dujh@hqu.edu.cn。
  • 作者简介:李宇(1995—),男,硕士研究生,研究方向为新能源火灾安全探测分析方面的研究,E-mail:liyu950311@163.com
  • 基金资助:
    国家自然科学基金项目(51506059),福建省科技计划引导性项目(2017Y0064),华侨大学博士启动项目(15BS311)及华侨大学中青年教师科研提升资助计划项目(ZQN-PY403)。

The temperature field and safety properties of supercapacitor’s during large current charging and discharging

LI Yu, DU Jianhua, HUANGFU Chenxin, TU Ran, ZHANG Rencheng   

  1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2017-07-22 Revised:2017-08-13 Online:2018-01-01 Published:2018-01-01

摘要: 超级电容器在进行大电流的充放电过程中,内部会迅速产生大量的热量,温度过高会引发安全事故。本文采用有限元热分析方法,首先通过剖析卷绕式超级电容器的结构组成,对结构进行假设简化,再分析非稳态导热微分方程,建立了三维有限元热分析模型。本文研究在常温(25 ℃)下,以20 A电流对超级电容器进行充放电,得到超级电容器内部的温度分布云图,核心区温度最高,负极柱区域温度比正极柱区域温度高;选取超级电容器的正极柱、负极柱和内部核心区域作为观测点,改变电流大小,观测温度随时间变化的情况;增大充电电流,当充电电流一定时,内部核心每升高100 ℃所需要的时间在逐渐减少;随着充电电流的增大,可以看到超级电容器内部核心升温加快。当超级电容器以瞬时大电流工作时,内部核心可以在较短的时间内达到几百摄氏度,应当采取降温措施避免安全事故发生。

关键词: 超级电容器, 大电流充放电, 有限元热分析, 导热微分方程, 温度场

Abstract:

A supercapacitor will generate a lot of heat quickly in the large current charge and discharge process, which may cause security incidents. This article use thermal analysis with finite element method, firstly assumes and simplifies the structure through the analysis of a supercapacitor structure composition and analyze the unsteady heat conduction differential equation to establish the three-dimensional finite element thermal analysis model. To charge and discharge the supercapacitor with 20 A at 25 ℃[and get the temperature distribution inside the super capacitor, the temperature of the core region is the highest and the temperature is higher at the negative column area than that at the positive column area. To select the positive column, the cathode column and supercapacitor’s internal core region as the observation point, we change the current and observed temperature change over time. With increase of the charging current, the time required of internal core heat up every 100 ℃ is gradually reduced when the current is certain. As the charging current increases, the inner core of the super capacitor heat up faster. When the super capacitor use instantaneous large current to work, the internal core can reach several hundred degree centigrade in a short time, so cooling measures should be taken to avoid safety accident.

Key words: super capacitor, high current charge and discharge, finite element thermal analysis, the conduction differential equation, temperature field