[1] DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass:Effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7:3574-3592.
[2] PENG S, LI L, HU Y, et al. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications[J]. ACS Nano, 2015, 9(2):1945-1954.
[3] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935.
[4] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430.
[5] LI L, JACOBS R, GAO P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes[J]. Journal of the American Chemical Society, 2016, 138(8):2838-2848.
[6] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3):587-603.
[7] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787.
[8] MANTHIRAM A, FU Y, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2012, 46(5):1125-1134.
[9] TOUIDJINE A. Lithium sulfur batteries:Mechanisms, modelling and materials conference[J]. Johnson Matthey's International Journal of Research Exploring Science and Technology in Industrial Applications, 2017, 61(4):308-310.
[10] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11:19-29.
[11] CHEN L, SHAW L L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267:770-783.
[12] BARCHASZ C, LEPRêTRE J C, ALLOIN F, et al. New insights into the limiting parameters of the Li/S rechargeable cell[J]. Journal of Power Sources, 2012, 199:322-330.
[13] 辛培明, 金波, 侯甲子, 等. 锂硫电池正极材料研究进展[J]. 储能科学与技术, 2015, 4(4):374-381. XIN P M, JIN B, HOU J Z, et al. Research progress of cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2015, 4(4):374-381.
[14] ZHANG Q, CHENG X B, HUANG J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4):241-264.
[15] WILD M, O'NEILL L, ZHANG T, et al. Lithium sulfur batteries, A mechanistic review[J]. Energy & Environmental Science, 2015, 8:3477-3494.
[16] MA L, HENDRICKSON K E, WEI S, et al. Nanomaterials:Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10(3):315-338.
[17] SONG M K, CAIMS E J, ZHANG Y. Lithium/sulfur batteries with high specific energy:Old challenges and new opportunities[J]. Nanoscale, 2013, 5:2186-2204.
[18] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries:Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48):1606823.
[19] PENG H J, HUANG J Q, LIU X Y, et al. Healing high-loading sulfur electrodes with unprecedented long cycling life:Spatial heterogeneity control[J]. Journal of the American Chemical Society, 2017, 139(25):8458-8466.
[20] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39):6244-6244.
[21] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24):1700260.
[22] XIAO L F, CAO Y L, XIAO J, et al. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24(9):1176-1181.
[23] CHENG H, WANG S. Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2014, 2:13783-13794.
[24] WU F, CHEN J, CHEN R, et al. Sulfur/polythiophene with a core/shell structure:Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2011, 115(13):6057-6063.
[25] ZHOU L, ZONG Y, LIU Z, et al. A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li-S batteries[J]. Renewable Energy, 2016, 96:333-340.
[26] KAZAZI M. Synthesis and elevated temperature performance of a polypyrrole-sulfur-multi-walled carbon nanotube composite cathode for lithium sulfur batteries[J]. Ionics, 2016, 22(7):1103-1112.
[27] XIN P M, JIN B, LI H, et al. Facile synthesis of sulfur-polypyrrole as cathodes for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4(1):115-121.
[28] LIANG X, LIU Y, WEN Z, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries[J]. Journal of Power Sources, 2011, 196(16):6951-6955.
[29] WANG C, WAN W, CHEN J T, et al. Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1:1716-1723.
[30] SUN M, ZHANG S, JIANG T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12):1819-1822.
[31] HOU T Z, XU W T, CHEN X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie, 2017, 56(28):8178-8182.
[32] ZHANG K, XIE K, YUAN K, et al. Enable effective polysulfide trapping and high sulfur loading via pyrrole modified graphene foam host for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(16):7309-7315.
[33] YUAN G, WANG H. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries[J]. Journal of Energy Chemistry, 2014, 23(5):657-661.
[34] XU J H, JIN B, Li H, et al. Sulfur/alumina/polypyrrole ternary hybrid material as cathode for lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2017, 42(32):20749-20758.
[35] HAO G P, TANG C, ZHANG E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37):1702829.
[36] YU M, MA J, XIE M, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11):1602347.
[37] ZHENG C, NIU S, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33:306-312.
[38] YANG Y, SUN W, ZHANG J, et al. High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer[J]. Electrochimica Acta, 2016, 209:691-699.
[39] MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area:A binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications, 2014, 50:13231-13234.
[40] ZHOU G, LI L, MA C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11:356-365.
[41] FANG R, ZHAO S, HOU P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28(17):3374-3382.
[42] ZEGEYE T A, KUO C F J, CHEN H M, et al. Dual-confined sulfur in hybrid nanostructured materials for enhancement of lithium-sulfur battery cathode capacity retention[J]. ChemElectroChem, 2017, 4(3):636-647.
[43] ZHAO Z, WANG S, LIANG R, et al. Graphene-wrapped chromium-MOF (MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries[J]. Journal of Materials Chemistry A, 2014, 2:13509-13512.
[44] SHAO H, AI F, WANG W, et al. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5:19892-19900. |