[1] 陈永翀, 李爱晶, 刘丹丹, 等. 储能技术在能源互联网系统中应用与发展展望[J]. 电器与能效管理技术, 2015, 24:39-44. CHEN Yongchong, LI Aijing, LIU Dandan, et al. Application and development of energy storage in energy internet system[J]. Electrical Appliances and Energy Efficiency Management Technologies, 2015, 24:39-44.
[2] RAND D. A journey on the electrochemical road to sustainability[J]. Journal of Solid State Electrochemistry, 2011, 15:1579-1622.
[3] 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池:应用与实践[M]. 北京:化学工业出版社, 2004. WU Yuping, DAI Xiaobing, MA Junqi, et al. Li-ion battery:Application and practice[M]. Beijing:Chemical Industry Press, 2004.
[4] ARUMUGAM Manthiram. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3:1063-1069.
[5] 陈雪丹, 陈硕翼, 乔志军, 等. 超级电容器的应用[J]. 储能科学与技术, 2016, 5 (6):800-806. CHEN Xuedan, CHEN Shuoyi, QIAO Zhijun, et al. Application of supercapacitors[J]. Energy Storage Science and Technology, 2016, 5 (6):800-806.
[6] 曹勇, 严长青, 王义飞, 等. 高安全高比能量动力锂离子电池系统路线探索[J]. 储能科学与技术, 2018, 7 (3):384-393. CAO Yong, YAN Changqing, WANG Yifei, et al. The technical route exploration of lithium ion battery with high safety and high energy density[J]. Energy Storage Science and Technology, 2018, 7 (3):384-393.
[7] 杨红生, 周啸, 冯天富, 等. 电化学电容器最新研究进展I.双电层电容器[J]. 电子元件与材料, 2003, 22 (2):13-19. YANG Hongsheng, ZHOU Xiao, FENG Tianfu, et al. Recent advances in the study on electrochemical capacitors I. Electric double-layer capacitors[J]. Electronic Components and Materials, 2003, 22 (2):13-19.
[8] 安仲勋, 颜亮亮, 夏恒恒, 等. 锂离子电容器研究进展及示范应用[J]. 中国材料进展, 2016, 35 (7):528-536. AN Zhongxun, YAN Liangliang, XIA Hengheng, et al. Research progress and pilot application of lithium-ion capacitor[J]. Materials China, 2016, 35 (7):528-536.
[9] PASQUIER A, PLITZ I, MENOCAL S, et a1. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive application[J]. Journal of Power Sources, 2003, 115 (1):171-178.
[10] GAO Y, MOGHBELLI H, EHSANI M, et al. Investigation of high-energy and high-power hybrid energy storage systems for military vehicle application[J]. Society of Automotive Engineers (SAE) Journal, 2003, 1:2287.
[11] KUPERMAN A, AHARON I, KARA A, et al. A frequency domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads[J]. Energy Conversion and Management, 2011, 52:3433-3438.
[12] CERICOLA D, KÖTZ R. Hybridization of rechargeable batteries and electrochemical capacitors:Principles and limits[J]. Electrochimca Acta, 2012, 72:1-17.
[13] AMATUCCI G G, BADWAY F, PASQUIER A Du, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of Electrochemical Society, 2001, 148:A930-A939.
[14] WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41 (2):797-828.
[15] 刘海晶, 夏永姚. 混合型超级电容器的研究进展[J]. 化学进展, 2011, 23 (2/3):595-604. LIU Haijing, XIA Yongyao. Research progress of hybrid supercapacitor[J]. Progress in Chemistry, 2011, 23 (2/3):595-604.
[16] KHOMENKO V, RAYMUNDO E, BEGUIN F. High-energy density graphite/AC capacitor in organic electrolyte[J]. Journal of Power Sources, 2008, 177:643-651.
[17] WANG Yonggang, XIA Yongyao. A new concept hybrid electrochemical surpercapacitor:Carbon/LiMn2O4 aqueous system[J]. Electrochemistry Communications, 2005, 7:1138-1142.
[18] 赵雪, 邱平达, 姜海静, 等. 超级电容器电极材料研究最新进展[J]. 电子元件与材料, 2015 (1):1-8. ZHAO Xue, QIU Pingda, JIANG Haijing, et al. Research progress of electrode materials for supercapacitors[J]. Electronic Components and Materials, 2015 (1):1-8.
[19] FAN Zhuangjun, YAN Jun, WEI Tong, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials, 2011, 21:2366-2375.
[20] BROUSSEA Thierry, TABERNAB Pierre Louis, CROSNIERA Olivier, et al. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. Journal of Power Sources, 2007, 173:633-641.
[21] 安仲勋, 夏恒恒, 徐甲强, 等. 以预锂化钛酸锂为负极的混合型超级电容器的性能研究[J]. 电子元件与材料, 2017, 36 (2):19-24. AN Zhongxun, XIA Hengheng, XU Jiaqiang, et al. Behavior of hybrid supercapacitor using pre-lithiated lithium titanate as anode[J]. Electronic Components and Materials, 2017, 36 (2):19-24.
[22] 袁美蓉, 刘伟强, 朱永法, 等. 负极预嵌锂方式对锂离子电容器性能的影响[J]. 材料导报B:研究篇, 2013, 27 (8):14-16. YUAN Meirong, LIU Weiqiang, ZHU Yongfa, et al. Influence of Li intercalation mode on the performance of Li-ion capacitors[J]. Materials Review B:Research, 2013, 27 (8):14-16.
[23] HU Xuebu, DENG Zhenghua, SUO Jishuan, et al. A high rate, high capacity and long life (Li2Mn2O4-AC)/Li4Ti5O12 hybrid battery-supercapacitor[J]. Journal of Power Sources, 2009, 187:635-639.
[24] CHEN Shuli, HU Huachong, WANG Changqing, et al. (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor:The effect of LiFePO4 content onits performance[J]. Journal of Renewable and Sustainable Energy, 2012, 4 (3):33114.
[25] 郝冠男, 张浩, 陈晓红, 等. LiFePO4/活性炭复合材料的储能机理[J]. 电池, 2011, 4 (41):177-180. HAO Guannan, ZHANG Hao, CHEN Xiaohong, et al. Energy storage mechanisms of LiFePO4/activated carbon composite[J]. Battery Bimonthly, 2011, 4 (41):177-180.
[26] 陈雪丹, 吴奕环, 乔志军. 活性炭对三元电池电容电化学性能的影响[J]. 广东化工, 2016, 43 (11):82-83. CHEN Xuedan, WU Yihuan, QIAO Zhijun. Effect of activated carbon on the electrochemistry performance of LiNi0.5Co0.2Mn0.3O2 battery capacitors[J]. Guangdong Chemical Industry, 2016, 43 (11):82-83.
[27] SUN Xianzhong, ZHANG Xiong, HUANG Bo, et al. (LiNi0.5Co0.2Mn0.3O2+AC)/graphite hybrid energy storage device with high specific energy and high rate capability[J]. Journal of Power Sources, 2013, 243:361-368.
[28] 张熊, 孙现众, 马衍伟. 高比能超级电容器的研究进展[J]. 中国科学:化学, 2014, 44 (7):1081-1096. ZHANG Xiong, SUN Xianzhong, MA Yanwei. Research of supercapacitors with high energy density[J]. Scientia Sinica Chimica, 2014, 44 (7):1081-1096.
[29] PASQUIER A D, PLITZ I, GURAL J, et al. Power-ion Battery:Bridging the gap between Li-ion and supercapacitor chemistries[J]. Journal of Power Sources, 2004, 136:160-170.
[30] 王亚彬, 聂俊平, 李文生, 等. 锂盐/活性炭混合电极电池-电容器研究[J]. 电子元件与材料, 2016, 35 (9):64-69. WANG Yabin, NIE Junping, LI Wensheng, et al. Lithium salt/active carbon hybrid electrode capacitor-battery[J]. Electronic Components and Materials, 2016, 35 (9):64-69.
[31] 杨洪, 何显峰, 李峰. 压实密度对高倍率锂离子电池性能的影响[J]. 电源技术, 2009, 33 (11):959-962. YANG Hong, HE Xianfeng, LI Feng. Influence of press density on high rate lithium-ion battery[J]. Chinese Journal of Power Sources, 2009, 33 (11):959-962.
[32] 文怀梁, 赵伟, 靳琳浩, 等. 活性碳堆积密度对双电层超级电容器性能的影响[J]. 电子元件与材料, 2017, 36 (3):26-30. WEN Huailiang, ZHAO Wei, JIN Linhao, et al. Stacking density of active carbon and its impact on edlc capacity behavior[J]. Electronic Components and Materials, 2017, 36 (3):26-30.
[33] GILBERT James, BAREÑO Javier, SPILA Timothy. Cycling behavior of NCM523/graphite lithium-ion cells in the 3~4.4 V range:Diagnostic studies of full cells and harvested electrodes[J]. Journal of The Electrochemical Society, 2016, 164 (1):A6054-A6065.
[34] 杨柳. 活性炭/LiNi0.5Mn1.5O4混合型电化学电容器的研究[D]. 北京:中国科学院大学, 2015. YANG Liu. Study on the activated carbon/LiNi0.5Mn1.5O4 hybrid electrochemical capacitor[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[35] 何湘柱, 胡燚, 邓忠德, 等. 石墨烯复合导电剂SP/CNTs/G对LiNi0.5Co0.2Mn0.3O2锂离子电池性能影响[J]. 电子元件与材料, 2016, 35 (11):77-82. HE Xiangzhu, HU Yan, DENG Zhongde, et al. Effect of graphene composite conductive agent SP/CNTs/G on performance of LiNi0.5Co0.2Mn0.3O2 lithium·ion battery[J]. Electronic Components and Materials, 2016, 35 (11):77-82.
[36] 金明钢. 影响锂离子电池阴极行为诸因素的研究[D]. 厦门:厦门大学, 2003. JIN Minggang. Study on the effect of some factor on the cathode performance of lithium-ion batteries[D]. Xiamen:Xiamen University, 2003.
[37] WANG Yonggang, SONG Yanfang, XIA Yongyao. Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chemical Society Review, 2016, 45:5925-5950.
[38] ZHOU Xiangyang, ZOU Youlan, ZHAO Guangjin, et al. Cycle life prediction and match detection in retired electric vehicle batteries[J]. Transactions of Nonferrous Metals Society of China, 2013 (23):3040-3045. |