[1] BANDAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Elelctrochmical Society, 2011, 158 (3):R1-R25.
[2] WANG Q, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
[3] 吴凯,张耀,曾毓群,等.锂离子电池安全性研究[J]. 化学进展, 2011, 23 (z1):401-409. WU K, ZHANG Y, ZENG Y Q, et al. Safety performance of lithium ion battery[J]. Progress in Chemistry, 2011, 23 (z1):401-409.
[4] 李慧芳, 黄家剑, 李飞, 等. 锂离子电池在充放电过程中的产热研究[J]. 电源技术, 2015, 39 (7):1390-1394. LI H F, HUANG J J, LI F, et al. Study on heat production of lithium ion batteries during charge and discharge process[J]. Chinese Journal of Power Sources, 2015, 39 (7):1390-1394.
[5] ISHIKAWA H, MENDOZA O, SONE Y, et al. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method[J]. Journal of Power Sources, 2012, 198:236-242.
[6] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100 (4):127-131.
[7] LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318:164-172.
[8] ZHANG J B, HUANG J, LI Z, et al. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117:447-461.
[9] ZHANG J B, SU L S, LI Z, et al. The evolution of lithium-ion cell thermal safety with aging examined in a battery testing calorimeter[J]. Batteries, 2016, 2 (2):12.
[10] LAESSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373:20-23.
[11] BERNARDI D, PAWLIKOWSHI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Elelctrochmical Society, 1985, 132 (1):5-12.
[12] YASUYUKI S, MAKOTO U, YAMAKI J. Thermal behavior of charged graphite and LixCoO2 in electrolytes containing alkyl phosphate for lithium-ion cells[J]. Journal of the Electrochemical Society, 2009, 156 (3):A176-A180.
[13] HEUBNER C, SCHNEIDER M, MICHAELI A. Detailed study of heat generation in porous LiCoO2 electrodes[J]. Journal of Power Sources, 2016, 307:199-207.
[14] GIEL H, HENRIQUES D, BOUNE G, et al. Investigation of the heat generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter[J]. Journal of Power Sources, 2018, 390:116-126.
[15] SARRE G, BLANCHARD P, BROUSSELY M. Aging of lithium-ion batteries[J]. Journal of Power Sources, 2004, 127:65-71.
[16] SAITO Y. Thermal behaviors of lithium-ion batteries during high-rate pulse cycling[J]. Journal of Power Sources, 2005, 146:770-774.
[17] LIU G M, OUYANG M G, LU L G, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116:1001-1010.
[18] ABADA S, MARLIAR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries:A review[J]. Journal of Power Sources, 2016, 306:178-192.
[19] ZHENG S Q, WANG L, FENG X N, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378:527-536.
[20] WU T Q,CHEN H D, WANG Q S, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes[J]. Journal of Hazardous Materials, 2018, 344:733-741. |