储能科学与技术 ›› 2015, Vol. 4 ›› Issue (2): 203-214.doi: 10.3969/j.issn.2095-4239.2015.02.013
詹元杰, 陈宇阳, 胡飞, 陈彬, 闫勇, 林明翔, 徐凯琪, 王昊, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2015-02-09
出版日期:
2015-04-19
发布日期:
2015-04-19
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@jphy.ac.an。
作者简介:
詹元杰(1988—),男,硕士研究生,研究方向为锂离子电池正极材料及其改性,E-mail:zhanyuanjie13@mails.ucas.ac.cn
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, XU Kaiqi, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2015-02-09
Online:
2015-04-19
Published:
2015-04-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science从2014年12月1日至2015年1月31日上线的锂电池研究论文,共1890篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料的结构演变及表面包覆对层状和尖晶石材料循环寿命的影响。高容量的硅、锡基负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,电解液添加剂、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析、电池模型的研究论文也有多篇。
中图分类号:
詹元杰, 陈宇阳, 胡飞, 陈彬, 闫勇, 林明翔, 徐凯琪, 王昊, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2014.12.1—2015.1.31)[J]. 储能科学与技术, 2015, 4(2): 203-214.
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, XU Kaiqi, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2014 to Jan. 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(2): 203-214.
[1] Lin F D,Nordlund T,Pan J, et al . Influence of synthesis conditions on the surface passivation and electrochemical behavior of layered cathode materials[J]. Journal of Materials Chemistry A ,2014,2(46):19833-19840. [2] Zheng J M,Gu M,Xiao J, et al . Functioning mechanism of AlF 3 coating on the Li- and Mn-rich cathode materials[J]. Chemistry of Materials ,2014,26(22):6320-6327. [3] Dong L L,Guangshe F,Chao C, et al . LiMO 2 (M = Mn、Co、Ni) hexagonal sheets with (101) facets for ultrafast charging-discharging lithium ion batteries[J]. Journal of Power Sources ,2015,276:238-246. [4] Bak S,Hu M E,Zhou Y, et al . Structural changes and thermal stability of charged LiNi x Mn y Co z O 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces ,2014,6(24):22594-22601. [5] Zhang W,Chi Z X,Mao W X, et al . One-nanometer-precision control of Al 2 O 3 nanoshells through a solution-based synthesis route[J]. Angewandte Chemie : International Edition ,2014,53(47):12776-12780. [6] Shi X,Wang C,Zhang Y, et al . Structure and electrochemical behaviors of spherical Li 1+ x Ni 0.5 Mn 0.5 O 2+ δ synthesized by rheological phase reaction method[J]. Electrochimica Acta ,2014,150:89-98. [7] Oishi M,Yogi C,Watanabe I, et al . Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material Li 1.16 Ni 0.15 Co 0.19 Mn 0.50 O 2 [J]. Journal of Power Sources ,2015,276:89-94. [8] Kleiner K,Dixon D,Jakes P, et al . Fatigue of LiNi 0.8 Co 0.15 Al 0.05 O 2 in commercial Li ion batteries[J]. Journal of Power Sources ,2015,273:70-82. [9] Croy J R,Park J S,Dogan F, et al . First-cycle evolution of local structure in electrochemically activated Li 2 MnO 3 [J]. Chemistry of Materials ,2014,26(24):7091-7098. [10] Oka Y,Obata T,Nishimura Y, et al . High-temperature cycling performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode with DLC protective film[J]. Journal of the Electrochemical Society ,2015,162(2):A3032-A3037. [11] Long B R,Croy J R,Park J S, et al . Advances in stabilizing 'layered-layered' x Li 2 MnO 3 ·(1- x )LiMO 2 (M=Mn、Ni、Co) electrodes with a spinel component[J]. Journal of the Electrochemical Society ,2014,161(14):A2160-A2167. [12] Zhou Y,Ma N J,Hu E, et al . Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries[J]. Nature Communications ,2014,5:5381. [13] Li J L,Zhu Y Q,Wang L, et al . Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability[J]. ACS Applied Materials & Interfaces ,2014,6(21):18742-18750. [14] Hur J,Kim I T. Synthesis and electrochemical performance of reduced graphene oxide/AlPO 4 -coated LiMn 1.5 Ni 0.5 O 4 for lithium-ion batteries[J]. Bulletin of the Korean Chemical Society ,2014,35(12):3553-3558. [15] Song J,Han X,Gaskell K J, et al . Enhanced electrochemical stability of high-voltage LiNi 0.5 Mn 1.5 O 4 cathode by surface modification using atomic layer deposition[J]. Journal of Nanoparticle Research ,2014,16:2745. [16] Zeng J,Li M,Li X, et al . A novel coating onto LiMn 2 O 4 cathode with increased lithium ion battery performance[J]. Applied Surface Science ,2014,317:884-891. [17] Hoeweling A,Glatthaar S,Noetzel D, et al . Evidence of loss of active lithium in titanium-doped LiNi 0.5 Mn 1.5 O 4 /graphite cells[J]. Journal of Power Sources ,2015,274:1267-1275. [18] Bianchini M,Suard E,Croguennec L, et al . Li-rich Li 1+ x Mn 2- x O 4 spinel electrode materials:An operando neutron diffraction study during Li + extraction/insertion[J]. Journal of Physical Chemistry C ,2014,118(45):25947-25955. [19] Hwang J,Jang H. Evolution of solid electrolyte interphase during cycling and its effect on electrochemical properties of LiMn 2 O 4 [J]. Journal of the Electrochemical Society ,2015,162(1):A103-A107. [20] Lu J,Zhan C,Wu T, et al . Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach[J]. Nature Communications ,2014,5:5693. [21] Kim D,Yoon T,Park S, et al . Re-deposition of aluminum species after dissolution to improve electrode performances of lithium manganese oxide[J]. Journal of the Electrochemical Society ,2014,161(14):A2020-A2025. [22] Murakami M,Shimizu S,Noda Y, et al . Spontaneous lithium transportation via LiMn 2 O 4 /electrolyte interface studied by 6/7 Li solid-state nuclear magnetic resonance[J]. Electrochimica Acta ,2014,147:540-544. [23] Yavuz M,Kiziltas-Yavuz N,Bhaskar A, et al . Influence of iron on the structural evolution of LiNi 0.4 Fe 0.2 Mn 1.4 O 4 during electrochemical cycling investigated by in situ powder diffraction and spectroscopic methods[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie ,2014,640(15):3118-3126. [24] Greco G,Brutti S,Vitucci F M, et al . Investigation of the chemical disorder of LiN 0.5 Mn 1.5 O 4 lattice by means of extended X-ray absorption fine structure spectroscopy[J]. Journal of Physical Chemistry C ,2014,118(46):26471-26478. [25] Li Y Y,Gabaly F E,Ferguson T R, et al . Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes[J]. Nature Materials ,2014,13(12):1149-1156. [26] Yim T,Choi S J,Park J H, et al . The effect of an elastic functional group in a rigid binder framework of silicon-graphite composites on their electrochemical performance[J]. Physical Chemistry Chemical Physics ,2015,17(4):2388-2393. [27] Kim Y M,Ahn J,Yu S H, et al . Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries[J]. Electrochimica Acta ,2015,151:256-262. [28] Park H,Choi S,Lee S, et al . Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature[J]. Journal of Materials Chemistry A ,2015,3(3):1325-1332. [29] Schroder K W,Dylla A G,Harris S J, et al . Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(23):21510-21524. [30] He Y,Piper D M,Gu M, et al . In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries[J]. ACS Nano ,2014,8(11):11816-11823. [31] Zhao X,Dunlap R A,Obrovac M N. Low surface area Si alloy/ionomer composite anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2014,161(14):A1976-A1980. [32] Dong Y,Ying B,Caiyan Y, et al . A novel pineapple-structured Si/TiO 2 composite as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds ,2014,609:86-92. [33] Avci C,Aydin A,Tuna Z, et al . Molten salt assisted self assembly (MASA):Synthesis of mesoporous metal titanate (CoTiO 3 MnTiO 3 and Li 4 Ti 5 O 12 ) thin films and monoliths[J]. Chemistry of Materials ,2014,26(20):6050-6057. [34] Fan X L,Shao J,Xiao X Z, et al . SnLi 4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries[J]. Nano Energy ,2014,9:196-203. [35] Jin S X,Li N,Cui H, et al . Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage[J]. ACS Applied Materials & Interfaces ,2014,6(21):19397-19404. [36] Li F S,Wu Y S,Chou J, et al . A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials ,2015,27(1):130-137. [37] Sole C,Drewett N E,Hardwick L J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite[J]. Faraday Discussions ,2014,172:223-237. [38] Lee H H,Park Y,Shin K H, et al . Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(21):19118-19126. [39] Kwon M S,Choi A,Park Y, et al . Synthesis of ordered mesoporous phenanthrenequinone-carbon via π-π interaction-dependent vapor pressure for rechargeable batteries[J]. Scientific Reports ,2014,4,doi:10.1038/srep07404. [40] Wang F,Li W,Hou M, et al . Sandwich-like Cr 2 O 3 -graphite intercalation composites as high-stability anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2015,3(4):1703-1708. [41] Su Q M,Zhang J,Wu Y S, et al . Revealing the electrochemical conversion mechanism of porous Co 3 O 4 nanoplates in lithium ion battery by in situ transmission electron microscopy[J]. Nano Energy ,2014,9:264-272. [42] Eastwood D S,Bayley P M,Chang H J, et al . Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging[J]. Chemical Communications ,2015,51(2):266-268. [43] Trocoli R,Franger S,Morales J, et al . Insights on the electrode/electrolyte interfaces in LiFePO 4 based cells with LiAl (Al) and Li (Mg) anodes[J]. Journal of Electroanalytical Chemistry ,2014,732:53-60. [44] Zhu Z,Hong M,Guo D, et al . All-solid-state lithium organic battery with composite polymer electrolyte and pillar 5 quinone cathode[J]. Journal of the American Chemical Society ,2014,136(47):16461-16464. [45] Ma C,Rangasamy E,Liang C, et al . Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li + /H + exchange in aqueous solutions[J]. Angewandte Chemie : International Edition ,2015,54(1):129-133. [46] Ramakumar S,Janani N,Murugan R. Influence of lithium concentration on the structure and Li + transport properties of cubic phase lithium garnets[J]. Dalton Transactions ,2015,44(2):539-552. [47] Christiansen A S,Stamate E,Thyden K, et al . Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films[J]. Journal of Power Sources ,2015,273:863-872. [48] Liu H M,Saikia D,Wu H C, et al . Towards an understanding of the role of hyper-branched oligomers coated on cathodes in the safety mechanism of lithium-ion batteries[J]. RSC Advances ,2014,4(99):56147-56155. [49] Wang B Q,Liu J,Sun Q, et al . Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries[J]. Nanotechnology ,2014,25(50):504007. [50] Liao X L,Huang Q M,Mai S W, et al . Self-discharge suppression of 4.9 V LiNi 0.5 Mn 1.5 O 4 cathode by using tris (trimethylsilyl) borate as an electrolyte additive[J]. Journal of Power Sources ,2014,272:501-507. [51] Yang X L,Xing J L,Liu X, et al . Performance improvement and failure mechanism of LiNi 0.5 Mn 1.5 O 4 /graphite cells with biphenyl additive[J]. Physical Chemistry Chemical Physics ,2014,16(44):24373-24381. [52] Jankowsky S,Hiller M M,Stolina R, et al . Performance of polyphosphazene based gel polymer electrolytes in combination with lithium metal anodes[J]. Journal of Power Sources ,2015,273:574-579. [53] Wang D Y,Xiao A,Wells L, et al . Effect of mixtures of lithium hexafluorophosphate (LiPF 6 ) and lithium bis (fluorosulfonyl) imide (LiFSI) as salts in LiNi 1/3 Mn 1/3 Co 1/3 O 2 /graphite pouch cells[J]. Journal of the Electrochemical Society ,2015,162(1):A169-A175. [54] Matsumoto K,Martinez M,Gutel T, et al . Stability of trimethyl phosphate non-flammable based electrolyte on the high voltage cathode (LiNi 0.5 Mn 1.5 O 4 )[J]. Journal of Power Sources ,2015,273:1084-1088. [55] Li B,Wang Y,Tu W, et al . Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive[J]. Electrochimica Acta ,2014,147:636-642. [56] Adams B D,Black R,Williams Z, et al . Towards a stable organic electrolyte for the lithium oxygen battery[J]. Advanced Energy Materials ,2015,5(1),doi:10.1002/aenm.201400867. [57] Ganapathy S,Adams B D,Stenou G, et al . Nature of Li 2 O 2 oxidation in a LiO 2 battery revealed by operando X-ray diffraction[J]. Journal of the American Chemical Society ,2014,136(46):16335-16344. [58] Johnson L,Li C M,Liu Z, et al . The role of LiO 2 solubility in O 2 reduction in aprotic solvents and its consequences for LiO 2 batteries[J]. Nature Chemistry ,2014,6(12):1091-1099. [59] Balaish M,Peled E,Golodnitsky D, et al . Liquid-free lithium-oxygen batteries[J]. Angewandte Chemie : International Edition ,2015,54(2):436-440. [60] Hu J J,Long G K,Liu S, et al . A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery[J]. Chemical Communications ,2014,50(93):14647-14650. [61] Zu C X,Klein M,Manthiram A. Activated Li 2 S as a high-performance cathode for rechargeable lithium-sulfur batteries[J]. Journal of Physical Chemistry Letters ,2014,5(22):3986-3991. [62] Moy D,Manivannan A,Narayanan S R. Direct measurement of polysulfide shuttle current:A window into understanding the performance of lithium-sulfur cells[J]. Journal of the Electrochemical Society ,2015,162(1):A1-A7. [63] Wu F,Lee J T,Nitta N, et al . Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries:Mechanisms of performance enhancement[J]. Advanced Materials ,2015,27(1):101-108. [64] Zu C,Manthiram A. High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content[J]. Advanced Energy Materials ,2014,4,doi:10.1002/ aenm.201400897. [65] Ma L,Zhuang H,Lu Y, et al . Tethered molecular sorbents:Enabling metal-sulfur battery cathodes[J]. Advanced Energy Materials ,2014,4,doi:10.1002/aenm.201400390. [66] Sarasketa-Zabala E,Gandiaga I,Rodriguez-Martinez L M, et al . Calendar ageing analysis of a LiFePO 4 /graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources ,2014,272:45-57. [67] Waldmann T,Wohlfahrt-Mehrens M. In-operando measurement of temperature gradients in cylindrical lithium-ion cells during high-current discharge[J]. ECS Electrochemistry Letters ,2015,4(1):A1-A3. [68] Corno M,Bhatt N,Savaresi S M, et al . Electrochemical model-based state of charge estimation for Li-ion cells[J]. IEEE Transactions on Control Systems Technology ,2015,23(1):117-127. [69] Jaeshin Y,Jeongbin L,Chee Burm S, et al . Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling[J]. Journal of Power Sources ,2015,277:379-386. [70] Meng X,Song Y C. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle:Part I for high frequency[J]. Journal of Power Sources ,2015,277:403-415. [71] Petzl M,Kasper M,Danzer M A. Lithium plating in a commercial lithium-ion battery:A low-temperature aging study[J]. Journal of Power Sources ,2015,275:799-807. [72] Sidhu A,Izadian A,Anwar S. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics ,2015,62(2):1002-1011. [73] Feng Xuning,Sun Jing,Ouyang Minggao, et al . Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources ,2015,275:261-273. [74] Lohmann N,Wesskamp P,Haussmann P, et al . Electrochemical impedance spectroscopy for lithium-ion cells:Test equipment and procedures for aging and fast characterization in time and frequency domain[J]. Journal of Power Sources ,2015,273:613-623. [75] Bai G X,Wang P F,Hu C, et al . A generic model-free approach for lithium-ion battery health management[J]. Applied Energy ,2014,135:247-260. [76] Bandhauer T,Garimella S,Fuller T F. Electrochemical-thermal modeling to evaluate battery thermal management strategies I side cooling[J]. Journal of the Electrochemical Society ,2015,162(1):A125-A136. [77] Thanh T V,Chen X,Shen W, et al . New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation[J]. Journal of Power Sources ,2015,273:413-422. [78] Schmidt J P,Weber A,Ivers-Tiffee E. A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique[J]. Journal of Power Sources ,2015,274:1231-1238. [79] Seid K A,Badot J C,Perca C, et al . An in situ multiscale study of ion and electron motion in a lithium-ion battery composite electrode[J]. Advanced Energy Materials ,2015,5,doi:10.1002/aenm.201400903. [80] Ming H,Ming J,Oh S M, et al . High dispersion of TiO 2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi 0.5 Mn 1.5 O 4 [J]. Journal of Materials Chemistry A ,2014,2(44):18938-18945. [81] Qi X,Blizanac B,DuPasquier A, et al . Investigation of PF 6 - and TFSI- anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2014,16(46):25306-25313. [82] Elia G A,Nobili F,Tossici R, et al . Nanostructured tin-carbon/ LiNi 0.5 Mn 1.5 O 4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources ,2015,275:227-233. [83] Hong J,Lee M,Lee B, et al . Biologically inspired pteridine redox centres for rechargeable batteries[J]. Nature Communications ,2014,5:5335. [84] Takahashi Y,Kumatani A,Munakata H, et al . Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nature Communications ,2014,5:5450. [85] Molina Piper D,Seoung-Bum S,Travis J J, et al . Mitigating irreversible capacity losses from carbon agents via surface modification[J]. Journal of Power Sources ,2015,275:605-611. [86] Li J,Fang Q H,Liu F, et al . Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode[J]. Journal of Power Sources ,2014,272:121-127. [87] Berkemeier F,Stockhoff T,Gallasch T, et al . Volume diffusion and interface transport in LiCoO 2 measured by electrochromic absorption[J]. Acta Materialia ,2014,80:132-140. [88] Cho J H,Aykol M,Kim S, et al . Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries[J]. Journal of the American Chemical Society ,2014,136(46):16116-16119. [89] Duan H,Li J,Chiang S W, et al . First-principles study of native defects in LiTi 2 O 4 [J]. Computational Materials Science ,2015,96:263-267. [90] Kalantarian M M,Oghbaei M,Asgari S, et al . Understanding non-ideal voltage behaviour of cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(45):19451-19460. [91] Tompsett D A,Islam M S. Surfaces of rutile MnO 2 are electronically conducting whereas the bulk material is insulating[J]. Journal of Physical Chemistry C ,2014,118(43):25009-25015. [92] Chen L,Liu Y,Ashuri M, et al . Li 2 S encapsulated by nitrogen-doped carbon for lithium sulfur batteries[J]. J. Mater. Chem. A ,2014,2(42):18026-18032. [93] Taminato S,Hirayama M,Suzuki K, et al . Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li 2 RuO 3 epitaxial film electrodes and in situ surface X-ray analysis[J]. Journal of Materials Chemistry A ,2014,2(42):17875-17882. [94] Hoang K. Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn 2 O 4 spinel[J]. Journal of Materials Chemistry A ,2014,2(43):18271-18280. [95] Saubanere M,Ben Yahia M,Lebegue S, et al . An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries[J]. Nature Communications ,2014,5:5559. [96] Mees M J,Pourtois G,Rosciano F, et al . First-principles material modeling of solid-state electrolytes with the spinel structure[J]. Physical Chemistry Chemical Physics ,2014,16(11):5399-5406. [97] Aykol M,Kirklin S,Wolverton C. Thermodynamic aspects of cathode coatings for lithium-ion batteries[J]. Advanced Energy Materials ,2014,4,doi:10.1002/aenm.201400690. [98] Fehse M,Ben Yahia M,Monconduit L, et al . New insights on the reversible lithiation mechanism of TiO 2 (B) by operando X-ray absorption spectroscopy and X-ray diffraction assisted by first-principles calculations[J]. Journal of Physical Chemistry C ,2014,118(47):27210-27218. [99] Nakayama M,Taki H,Nakamura T, et al . Combined computational and experimental study of Li exchange reaction at the surface of spinel LiMn 2 O 4 as a rechargeable Li-ion battery cathode[J]. Journal of Physical Chemistry C ,2014,118(47):27245-27251. [100] Dixit H,Zhou W,Idrobo J C, et al . Facet-dependent disorder in pristine high-voltage lithium-manganese-rich cathode material[J]. ACS Nano ,2014,8(12):12710-12716. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||