[1] 程晓敏, 何高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展[J]. 材料导报, 2010, 24(17):139-143. CHENG Xiaomin, HE Gao, WU Xingwen. Application and research progress of aluminum-based thermal storage materials in solar thermal power[J]. Materials Review, 2010, 24(17):139-143.
[2] 程晓敏, 李明娅, 朱教群, 周卫兵, 等. 太阳能热利用储热材料的研究与应用[J]. 变频器世界, 2014(8):41-49. CHENG Xiaomin, LI Mingya, ZHU Jiaoqun, ZHOU Weibing, et al. Research and application of solar thermal energy storage materials[J]. The World of Inverters, 2014(8):41-49.
[3] BIRCHENALL C E, RIECHMAN A F. Heat storage in eutectic alloys[J]. Metallurgical and Materials Transactions A, 1980, 11(8):1415-1420.
[4] BLANCO-RODRÍGUEZ P, RODRÍGUEZ-ASEGUINOLAZA J, RISUEÑO E, et al. Thermophysical characterization of Mg-51%Zn eutectic metal alloy:A phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014, 75(7):414-420.
[5] RODRÍGUEZ-ASEGUINOLAZA J, BLANCO-RODRÍGUEZ P, RISUEÑO E, et al. Thermodynamic study of the eutectic Mg49-Zn51, alloy used for thermal energy storage[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(1):93-99.
[6] RISUENO E, FAIK A, RODRÍGUEZ-ASEGUINOLAZA J, et al. Mg-Zn-Al eutectic alloys as phase change material for latent heat thermal energy storage[J]. Energy Procedia, 2015, 69:1006-1013.
[7] 程晓敏, 陶冰梅, 万清舟, 李翠, 李元元. Mg-Cu-Zn相变储热材料充放热特性研究[J]. 武汉理工大学学报(信息与管理工程版), 2014, 36(3):332-336. CHENG Xiaomin, TAO Bingmei, WAN Qingzhou, LI Cui, LI Yuanyuan. Heat charge and discharge characteristics of phase change thermal storage of Mg-Cu-Zn[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2014, 36(3):332-336.
[8] 孙正, 程晓敏, 朱教群, 周卫兵, 李元元. Mg基高温相变储热共晶合金熔化相变焓的研究[J]. 功能材料, 2017, 48(2):2236-2240. SUN Zheng, CHENG Xiaomin, ZHU Jiaoqun, ZHOU Weibing, LI Yuanyuan. Latent heat of melting of Mg-based eutectic alloys as high temperature phase change materials for latent heat storage[J]. Journal of Functional Materials, 2017, 48(2):2236-2240.
[9] PLIMPTON S. Computational limits of classical molecular dynamics simulations[J]. Computational Materials Science, 1995, 4(4):361-364.
[10] YANG Meng, XU Jiangang, ZHANG Yunguang. The effect of layer thickness and interfacial defect with steps of copper-nickel multilayer thin flm on deformation mechanism[J]. Applied Physics, 2015(5):25-32.
[11] DAW M S, BASKES M I. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12):6443-6453.
[12] FOILES S M, BASKES M I, DAW M S. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method[J]. Physical Review B, 1985, 32:7685-7693.
[13] 冯黛丽, 冯妍卉, 张欣欣. 小尺寸铝纳米团簇的相变行为[J]. 物理学报, 2013, 62(8):111-116. FENG Daili, FENG Yanhui, ZHANG Xinxin. Melting and freezing behavior of aluminum nanoclusters with small size[J]. Acta Physica sinica, 2013, 62(8):111-116.
[14] WIRNSBERGER P, FIJAN D, SARIC A, et al. Non-equilibrium simulations of thermally induced electric fields in water[J]. The Journal of Chemical Physics, 2016, 144(22):224102-1-224102-16.
[15] YING T, ZHENG M Y, LI Z T, et al. Thermal conductivity of ascast and as-extruded bnary Mg-Al alloys[J]. Journal of Alloys & Compounds, 2014, 608(38):19-24.
[16] FANG D, SUN Z, LI Y, CHENG X. Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2016, 92(1):187-193. |