[1] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1 (1): 26-40.
ZHANG Xinjing, CHEN Haisheng, LIU Jinchao, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1 (1): 26-40.
[2] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2 (2): 146-151.
CHEN Haisheng, LIU Jinchao, GUO Huan, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2 (2): 146-151.
[3] 刘畅, 徐玉杰, 胡珊, 等. 压缩空气储能电站技术经济性分析[J]. 储能科学与技术, 2015, 4 (2): 158-168.
LIU Chang, XU Yujie, HU Shan, et al. Techno-economic analysis of compressed air energy storage power plant[J]. Energy Storage Science and Technology, 2015, 4 (2) : 158-168.
[4] STEINKE R J, CROUSE J E. Preliminary analysis of the effectiveness of variable geometry guide vanes to control rotor inlet flow conditions[R]. NASA TND- 3823, 1967.
[5] DONALD C U, RONALD J S, WALTER S C. Stalled and stall-free performance of axial-flow compressor stage with three inlet-guide-vane and stator-blade settings[R]. NASA TND-8457, 1977.
[6] BROICHHAUSEN K D, HARSTER P. Aerodynamic analysis of a
transonic compressor with variable stator vanes[R]. ASME TND-8457,
1977.
[7] PEKOS N F, FABI J, JACKSON A J, et al. Variable geometry and multicycle engines[C]//Proceedings of the Advisory Group for Aerospace Research and Development Meuiuy-sur-seine Conferece Proceedings, France: Agard, 1977.
[8] WESTMORELAND J S, HOWLETT R A, LOHMANN R P. Progress with variable cycle engines[J]. Supersonic Cruise Research, 1979: 371-390.
[9] ROY-AIKINS J E. Considerations for the use of variable geometry in gas turbines[C]//ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990: doi: 10.1115/90-GT-271.
[10] MOHTAR H, CHESSE P, YAMMINE A, et al. Variable inlet guide vanes in a turbocharger centrifugal compressor: Local and global study[R]. SAE Technical Paper, 2008.
[11] ISHINO Minoru, IWAKIRI Yuji, BESSHO Akinobu. Effects of variable inlet guide vanes on small centrifugal compressor performance[C]//Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, USA: Indianapolis, Indiana, 1999.
[12] SWAIN E. The design of an inlet guide vane assembly for an industrial centrifugal compressor[J]. Energy Saving in the Design and Operation of Compressors, 1996, 13: 11-12.
[13] COPPINGER M, SWAIN E. Performance prediction of an industrial centrifugal compressor inlet guide vane system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214 (2): 153-164.
[14] EBISAWA Naoto, FUKUSHIMA Yasuo, ORIKASA Hideaki. Dynamic simulation of centrifugal compressor startup with inlet guide vane[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2011: 2067-2074.
[15] HILL H E, NG W F, VLACHOS P P, et al. 2d parametric study using cfd of a circulation control inlet guide vane[C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2007: 1405-1413.
[16] TSALAVOUTAS A, MATHIOUDAKIS K, STAMATIS A, et al. Identifying faults in the variable geometry system of a gas turbine compressor[J]. Journal of Turbomachinery, 2001, 123 (1): 33-39.
[17] GALVAS M R. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed[R]. USA: Washington D.C., 1972.
|