[1] HÄNCHEN M, BRÜCKNER S, STEINFELD A. High-temperature thermal storage using a packed bed of rocks-heat transfer analysis and experimental validation[J]. Applied Thermal Engineering, 2011, 31(10): 1798-1806.
[2] ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10): 3084-3098.
[3] ZANGANEH G, PEDRETTI A, HASELBACHER A, et al. Design of packed bed thermal energy storage systems for high-temperature industrial process heat[J]. Applied Energy, 2015, 137: 812-822.
[4] WANG Y, BAI F W, WANG Z F. Experimental research of the heat transfer characteristics using a packed-bed of honeycomb ceramic for high temperature thermal storage system[J]. Energy Procedia, 2015, 69: 1059-1067.
[5] WANG Y, YANG B, BAI F W. Heat transfer performance research of honeycomb ceramic thermal energy storage[C]//2015 Solar World Congress, Korea, 2015.
[6] HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138.
[7] JAKIEL C, ZUNFT S, NOWI A. Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: The European project AA-CAES[J]. International Journal of Energy Technology and Policy, 2007, 5: 296-306.
[8] MATHUR A, KASETTY R, OXLEY J, et al. Using encapsulated phase change salts for concentrated solar power plant[J]. Energy Procedia, 2014, 49: 908-915.
[9] KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable &Sustainable Energy Reviews, 2010, 14(3): 955-970.
[10] KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable &Sustainable Energy Reviews, 2007, 11(9): 1913-1965.
[11] NKWETTA D N, HAGHIGHAT F. Thermal energy storage with phase change material-a state-of-the art review[J]. Sustainable Citiesand Society, 2014, 10: 87-100.
[12] JALALZADEH A, STEELE W G, ADEBIYI G A. Heat transfer in a high-temperature packed bed thermal energy storage system-roles of radiation and intraparticle conduction[J]. Journal of Energy Resources Technology, 1996, 118: 50-57.
[13] FLUECKIGER S M, GARIMELLA S V. Latent heat augmentation of thermocline energy storage for concentrating solar power—A systemlevel assessment[J]. Applied Energy, 2014, 116(3): 278-287.
[14] PEIRO G, GASIA J, MIRO L, et al. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736.
[15] ZANGANEH G, COMMERFORD M, HASELBACHER A, et al. Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials[J]. Applied Thermal Engineering, 2014, 70(1) : 316-320.
|