[1] BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(1):A5019-A5025.
[2] CHEN C H, WANG C J, HWANG B J. Electrochemical performance of layered Li[NixCo1-2xMnx]O2, cathode materials synthesized by a sol-gel method[J]. Journal of Power Sources, 2005, 146(1):626-629.
[3] ZHAO X, WANG J, DONG X. Structure design and performance of LiNixCoyMn1-x-yO2 cathode materials for lithium-ion batteries:A review[J]. Cheminform, 2015, 61(10):1071-1083.
[4] HUI Z, PARK S J, SHI F. Propylene carbonate (PC)-based electrolytes with high coulombic efficiency for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(1):A194-A200.
[5] AN S J, LI J, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Cheminform, 2016, 105(28):52-76.
[6] PANT D, DOLKER T. Green and facile method for the recovery of spent lithium nickel manganese cobalt oxide (NMC) based lithium ion batteries[J]. Waste Management, 2017, 60:doi:10.1016/j.wasman. 2016.09.039.
[7] MANIKANDAN P, PERIASAMY P, JAGANNATHAN R. Faceted shape-drive, cathode particles using mixed hydroxy-carbonate precursor for mesocarbon microbeads versus, LiNi1/3Mn1/3Co1/3O2, Li-ion pouch cell[J]. Journal of Power Sources, 2014, 245(1):501-509.
[8] SHI S, QI Y, LI H, et al. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. Journal of Physical Chemistry C, 2013, 117(17):8579-8593.
[9] BERNARD P, MARTINEZ H, TESSIER C, et al. Role of negative electrode porosity in long-term aging of NMC//graphite Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(13):7096-7103.
[10] JALKANEN K, KARPPINEN J, SKOGSTROM L, et al. Cycle aging of commercial NMC/graphite pouch cells at different temperatures[J]. Applied Energy, 2015, 154:160-172. |