[1] NISHIDE H, OYAIZU K. Materials science-toward flexible batteries[J]. Science, 2008, 319(5864):737-738.
[2] WEN L, CHEN J, LIANG J, et al. Flexible batteries ahead[J]. National Science Review, 2017, 4(1):20-23.
[3] NOORDEN R V. The rechargeable revolution:A better battery[J]. Nature, 2014, 507(7490):26-28.
[4] MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787.
[5] WANG D W, ZENG Q C, ZHOU G M, et al. Carbon-sulfur composites for Li-S batteries:Status and prospects[J]. Journal of Materials Chemistry A, 2013, 1(33):9382-9394.
[6] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
[7] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8):2614-2624.
[8] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries:Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2(1):76-106.
[9] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries:Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48):1606823.
[10] 唐晓楠, 孙振华, 陈克, 等. 锂硫电池复合硫正极中客体材料与多硫化物的相互作用[J]. 储能科学与技术, 2017, 6(3):345-359. TANG X N, SUN Z H, CHEN K, et al. Cathode hybrid materials for lithium-sulfurbattery:The interaction between the host and polysulfide[J]. Energy Storage Science and Technology, 2017, 6(3):345-359.
[11] WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage:From materials to devices[J]. Advanced Materials, 2016, 28(22):4306-4337.
[12] 闻雷, 陈静, 罗洪泽, 等. 石墨烯在柔性锂离子电池中的应用及前景[J]. 科学通报, 2015, 60(7):630-644. WEN L, CHEN J, LUO H Z, et al. Graphene for flexible lithium-ion batteries:Applications and prospects[J]. Chinese Science Bulletin, 2015, 60(7):630-644.
[13] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2017, 24(39):6105-6112.
[14] JIN J, WEN Z Y, MA G Q, et al. Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries[J]. RSC Advances, 2013, 3(8):2558-2560.
[15] ZHOU G M, LI L, MA C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11:356-365.
[16] LIN Y, WANG X M, LIU J, et al. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017, 31(7):478-485.
[17] LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7):626-632.
[18] SUN L, KONG W B, JIANG Y, et al. Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(10):5305-5320.
[19] CHEN Y, LU S T, WU X H, et al. Flexible carbon nanotube-graphene/sulfur composite film:Free-standing cathode for high-performance lithium/sulfur batteries[J]. Journal of Physical Chemistry C, 2015, 119(19):10288-10294.
[20] ZHU L, PENG H J, LIANG J Y, et al. Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries[J]. Nano Energy, 2015, 11:746-755.
[21] ZHAI P Y, HUANG J Q, ZHU L, et al. Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density[J]. Carbon, 2017, 111:493-501.
[22] HUANG J Q, PENG H J, LIU X Y, et al. Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2(28):10869-10875.
[23] ZHOU G M, WANG D W, LI F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science, 2012, 5(10):8901-8906.
[24] WANG H Q, ZHANG W C, LIU H K, et al. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2016, 55(12):3992-3996.
[25] ZHOU G M, LI L, WANG D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4):641-647.
[26] CHOUDHURY S, SAHA T, NASKAR K, et al. A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries[J]. Polymer, 2017, 112:447-456.
[27] LIU M, ZHOU D, HE Y B, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22:278-289.
[28] LU L L, GE J, YANG J N, et al. Free-standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Letters, 2016, 16(7):4431-4437.
[29] ZUO T T, WU X W, YANG C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials, 2017, 29(29):1700389.
[30] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17):5237-5288.
[31] 赵梦, 许睿, 黄佳琦, 等. 锂硫电池中柔性正极的研究进展[J]. 储能科学与技术, 2017, 6(3):360-379. ZHAO M, XU R, HUANG J Q, et al. Flexible cathodes for lithium sulfur battery:A review[J]. Energy Storage Science and Technology, 2017, 6(3):360-379.
[32] 马强, 戚兴国, 容晓辉, 等. 新型固态聚合物电解质在锂硫电池中的性能研究[J]. 储能科学与技术, 2017, 6(5):713-718. MA Q, QI X G, RONG X H, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5):713-718.
[33] BOUCHET R, MARIA S, MEZIANE R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12(5):452-457.
[34] SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China Chemistry, 2017, 60(12):1508-1526.
[35] YANG X Y, XU J J, BAO D, et al. High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer[J]. Advanced Materials, 2017, 29(26):1700378.
[36] HE J R, CHEN Y F, LV W Q, et al. Highly-flexible 3D Li2S/graphene cathode for high-performance lithium sulfur batteries[J]. Journal of Power Sources, 2016, 327:474-480.
[37] WU F X, LEE J T, ZHAO E B, et al. Graphene-Li2S-carbon nanocomposite for lithium-sulfur batteries[J]. ACS Nano, 2016, 10(1):1333-1340.
[38] ZHOU G M, PAEK E, HWANG G S, et al. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes[J]. Advanced Energy Materials, 2016, 6(2):1501355. |