[1] ZHOU Y, LI X. Overview of lithium-ion battery SOC estimation[C]//Proceeding of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 2015.
[2] BOUCAR Diouf, RAMCHANDRA Pode. Potential of lithium-ion batteries in renewable energy[J]. Renewable Energy, 2015(76):375-380.
[3] RAMADAN H S, BECHERIF M, CLAUDE F. Extended kalman flter for accurate state of charge estimation of lithium-based batteries:A comparative analysis[J]. International Journal of Hydrogen Energy, 2017(42):29033-29046.
[4] FLEISCHER C, WAAG W, HEYN H M, et al. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models:Part 1. Requirements, critical review of methods and modeling[J]. Journal of Power Sources, 2014, 260(15):276-291.
[5] ZHANG Fei, LIU Guangjun, FANG Lijin, et al. Estimation of battery state of charge with, observer:applied to a robot for inspecting power transmission lines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2):1086-1095.
[6] DANG X, YAN L, JIANG H, et al. Open-circuit voltage-based state of charge estimation of lithium-ion power battery by combining controlled auto-regressive and moving average modeling with feedforward-feedback compensation method[J]. International Journal of Electrical Power & Energy Systems, 2017(90):27-36.
[7] SBARUFATTI C, CORBETTA M, GIGLIO M, et al. Adaptive prognosis of lithium-ion batteries based on the combination of particle flters and radial basis function neural networks[J]. Journal of Power Sources, 2017, 344(3):128-140.
[8] PLETT G L. Extended kalman filtering for battery management systems of LiPB based HEV battery packs:Part 1. Background[J]. Journal of Power Sources, 2004, 134:252-261.
[9] WANG Qianqian, WANG Jiao, ZHAO Pengju, et al. Correlation between the model accuracy and model-based SOC estimation[J]. Electrochimica Acta, 2017(228):146-159.
[10] JOHNSON V H, SACK T. Temperature-dependent battery models for high-power lithium-ion batteries[C]//17th Annual Electric Vehicle Symposium, Montreal, Canada, 2000.
[11] HAN H, XU H, YUAN Z, et al. State of Charge estimation of Liion battery in EVs based on second-order sliding mode observer[C]//Transportation Electrifcation Asia-Pacifc. IEEE, 2014:1-5.
[12] 杨阳, 汤桃峰, 秦大同, 等. 电动汽车锂电池PNGV等效电路模型与SOC估算方法[J]. 系统仿真学报, 2012, 24(4):202-206. YANG Yang, TANG Taofeng, QIN Datong, et al. PNGV equivalent circuit model and SOC estimation algorithm of lithium batteries for electric vehicle[J]. Journal of System Simulation, 2012, 24(4):202-206.
[13] DUONG V, BASTAWROUS H A, LIM K, et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive leastsquares[J]. Journal of Power Sources, 2015, 296(11):215-224.
[14] DONG Xile, ZHANG Caiping, JIANG Jiuchun. Evaluation of SOC estimation method based on EKF/AEKF under noise interference[J]. Energy Procedia, 2018(152):520-525.
[15] WANG J, GUO J, LEI D. An adaptive Kalman fltering based state of charge combined estimator for electric vehicle battery pack[J]. Energy Conversion & Management, 2009(50):3182-3186. |