Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 257-265.doi: 10.19799/j.cnki.2095-4239.2019.0207
Previous Articles Next Articles
CHEN Dehai(), WANG Chao(), ZHU Zhengkun, ZOU Zhengming
Received:
2019-09-19
Revised:
2019-10-17
Online:
2020-01-05
Published:
2019-11-05
Contact:
Dehai CHEN
E-mail:158865212@qq.com;1025359112@qq.com
CLC Number:
CHEN Dehai, WANG Chao, ZHU Zhengkun, ZOU Zhengming. Lithium battery state-of-charge estimation based on interactive multi-model unscented kalman filter Algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265.
1 | 安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861. |
AN Zhiguo, TIAN Maofei, ZHAO Lin, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861. | |
2 | 李玉, 徐俊, 彭程, 等. 结合变压器正反激原理的动力电池主动均衡方法[J]. 西安交通大学学报, 2019, 53(8): 151-158. |
LI Yu, XU Jun, PENG Cheng, et al. An active equalization technology for power batteries based on forward-flyback principle of transformers[J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 151-158. | |
3 | 蒋超宇, 王伟超, 杨学平. 混合动力汽车磷酸铁锂动力电池建模与SOC计算[J]. 储能科学与技术, 2018, 7(5): 897-901. |
JIANG Chaoyu, WANG Weichao, YANG Xueping. Modeling and SOC calculations of hybrid electrical vehicles(HEV) powered by lithium iron phosphate batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 897-901. | |
4 | 贾亮, 王真真, 孙延鹏, 等. 基于多种模型的扩展卡尔曼滤波算法的SOC估算[J]. 电源技术, 2018, 42(4): 568-571. |
JIA Liang, WANG Zhenzhen, SUN Yanpeng, et al. Estimation of battery SOC based on extended Kalman filter algorithm of multiple models[J]. Chinese Journal of Power Sources, 2018, 42(4): 568-571. | |
5 | 孙丽贝, 屈薇薇. 基于EKF修正算法的锂电池SOC估算[J]. 蓄电池, 2018, 55(3): 107-111. |
SUN Libei, QU Weiwei. Estimation of SOC of the lithium-ion battery based on extended Kalman filtering correction algorithm[J]. Chinese Labat Man, 2018, 55(3): 107-111. | |
6 | 邱亚, 李鑫, 陈薇, 等. 基于RLS和EKF算法的全钒液流电池SOC估计[J]. 控制与决策, 2018, 33(1): 37-44. |
QIU Ya,LI Xin, CHEN Wei, et al. Vanadium redox battery SOC estimation based on RLS and EKF algorithm[J].Control and Decision, 2018, 33(1): 37-44. | |
7 | XIA X H, WEI Y. Lithium-ion batteries state-of-charge estimation basedon interactive multiple-model extended Kalman filter[J]. International Conference on Automation and Computing(ICAC), 2016: 204-20. |
8 | 邱焕尧, 王宏朋, 黄凯. 基于无迹卡尔曼滤波算法的锂电池SOC估计[J]. 汽车实用技术, 2018(19): 22-24. |
QIU Huanyao, WANG Hongpeng, HUANG Kai. SOC estimation of lithium battery based on unscented calman filtering Algorithm[J]. Automobile Technology, 2018(19): 22-24. | |
9 | 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(z1): 378-387. |
HUANG Kai, GUO Yongfang, LI Zhigang. High precision parameter identification of lithium-ion battery model based on feedback particle Swarm optimization Algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(z1): 378-387. | |
10 | 田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750. |
TIAN Maofei, AN Zhiguo, CHEN Xing, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750. | |
11 | 徐颖, 沈英. 基于改进卡尔曼滤波的电池SOC估算[J]. 北京航空航天大学学报, 2014, 40(6): 855-860. |
XU Ying, SHEN Ying. Improved battery state-of-charge estimation based on Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 855-860. | |
12 | 唐进, 徐国锋, 李建玲. 不同放电倍率磷酸铁锂电池循环性能研究[J]. 有色金属科学与工程, 2017, 8(5): 95-102. |
TANG Jin, XU Guofeng, LI Jianling. Study on cycling performance of lithium iron phosphate battery at different discharge rates[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 95-102. | |
13 | 吴忠强, 尚梦瑶, 申丹丹, 等. 基于神经网络和MS-AUKF算法的蓄电池荷电状态估计[J/OL]. 中国电机工程学报, 2019: 1-10. |
WU Zhongqiang, SHANG Mengyao, SHEN Dandan,et al. SOC Estimation of Battery by MS-AUKF Algorithm and BPNN [J/OL]. Proceedings of the CSEE, 2019: 1-10. | |
14 | 刘江义, 王春平, 王暐. 基于双马尔可夫链的SMC‐CBMe Mber滤波[J].系统工程与电子技术, 2019, 41(8): 1686-1691. |
LIU Jiangyi, WANG Chunping, WANG Wei. SMC‐CBMeMBer filter based on pairwise Markov chains[J]. Systems Engineering and Electronics, 2019, 41(8): 1686-1691. | |
15 | 周卫琪, 齐翔, 陈龙, 等. 基于无迹卡尔曼滤波与遗传算法相结合的车辆状态估计[J]. 汽车工程, 2019, 41(2): 198-205. |
ZHOU Weiqi, QI Xiang, CHEN Long, et al. Vehicle state estimation based on the combination of unscented Kalman filtering and genetic Algorithm[J]. Automotive Engineering, 2019, 41(2): 198-205. | |
16 | 杨峰, 郑丽涛, 王家琦, 等. 双层无迹卡尔曼滤波[J]. 自动化学报, 2019, 45(7): 1386-1391. |
YANG Feng, ZHENG Litao, WANG Jiaqi, et al. Double layer unscented Kalman filter[J]. Acta Automatica Sinica, 2019, 45(7): 1386-1391. |
[1] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[2] | Jingchao SHEN, Jian HU, Jingliang HU, Ticao JIAO, Xiaomei QI, Yunpeng WANG, Di YU, Shangqi LIU. Parameter adaptive backstepping control of bidirectional DC-DC converter for DC microgrid energy storage device [J]. Energy Storage Science and Technology, 2022, 11(5): 1512-1522. |
[3] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[4] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[5] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[6] | Aifen SUN, Na CHI. SOC estimation algorithm based on improved Gaussian process regression [J]. Energy Storage Science and Technology, 2022, 11(1): 253-257. |
[7] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[8] | Jialu QIAO, Shunli WANG, Chunmei YU, Weihao SHI, Xiao YANG. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2318-2325. |
[9] | Yi'nan ZHU, Taolin LÜ, Zhiyun ZHAO, Wen YANG. State of charge estimation of lithium ion battery based on parallel Kalman filter [J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. |
[10] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[11] | Leping SUN, Shuai HAN, Wanlu WU, Xiaoxuan GUO. Coordinated optimal scheduling of multiple virtual power plants in multiple time scales based on economic model predictive control [J]. Energy Storage Science and Technology, 2021, 10(5): 1845-1853. |
[12] | Lei ZHU, Zibo LIU, Lulu LI, Tinglong PAN, Weilin YANG. Research on a battery SOC prediction method based on the RLS-DLUKF algorithm [J]. Energy Storage Science and Technology, 2021, 10(3): 1137-1144. |
[13] | Shiyi FU, Taolin LYU, Fanqi MIN, Weilin LUO, Chengdong LUO, Lei WU, Jingying XIE. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles [J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. |
[14] | Yuanfu ZHU, Wenwu HE, Jianxing LI, Youcai LI, Peiqiang LI. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU [J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176. |
[15] | Juqiang FENG, Long WU, Kaifeng HUANG, Jun LU, Xing ZHANG. Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF [J]. Energy Storage Science and Technology, 2021, 10(1): 242-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||