Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 617-625.doi: 10.19799/j.cnki.2095-4239.2019.0237
Previous Articles Next Articles
XING Xueqi, LIU Qinghua(), LEMMON John
Received:
2019-10-22
Revised:
2019-11-13
Online:
2020-03-05
Published:
2020-03-15
Contact:
Qinghua LIU
E-mail:qinghua.liu.n@chnenergy.com.cn
CLC Number:
XING Xueqi, LIU Qinghua, LEMMON John. Recent progresses in non-aqueous redox flow batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 617-625.
1 | YANG Z , ZHANG J , KINTNER-MEYER M C W , et al . Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
2 | YUAN Z Z , YIN Y B , XIE C X , et al . Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019: 10.1002/adma.201902025. |
3 | KE X , PRAHL J M , ALEXANDER J I D , et al . Rechargeable redox flow batteries: Flow fields, stacks and design considerations[J]. Chemical Society Reviews, 2018, 47(23): 8721-8743. |
4 | WANG W , LUO Q , LI B , et al . Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986. |
5 | SOLOVEICHIK G L . Flow batteries: Current status and trends[J]. Chemical Reviews, 2015, 115(20): 11533-11558. |
6 | WEI X , PAN W , DUAN W , et al . Materials and systems for organic redox flow batteries: Status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204. |
7 | PARK M , RYU J, WANG W , et al . Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2016, 2(1): doi:10.1038/natrevmats.2016.80. |
8 | LU W , LI X , ZHANG H . The next generation vanadium flow batteries with high power density)—A perspective [J]. Physical Chemistry Chemical Physics, 2018, 20(1): 23-35. |
9 | STAUBER J M , ZHANG S , GVOZDIK N , et al . Cobalt and vanadium trimetaphosphate polyanions: Synthesis, characterization, and electrochemical evaluation for non-aqueous redox-flow battery applications[J]. Journal of the American Chemical Society, 2018, 140(2): 538-541. |
10 | HUANG Y , GU S , YAN Y , et al . Nonaqueous redox-flow batteries: Features, challenges, and prospects[J]. Current Opinion in Chemical Engineering, 2015, 8: 105-113. |
11 | GONG K , FANG Q , GU S , et al . Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs[J]. Energy & Environmental Science, 2015, 8(12): 3515-3530. |
12 | MATSUDA Y , TANAKA K , OKADA M , et al . A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte[J]. Journal of Applied Electrochemistry, 1988, 18(6): 909-914. |
13 | CHAKRABARTI M H , DRYFE R A W , ROBERTS E P L . Evaluation of electrolytes for redox flow battery applications[J]. Electrochimica Acta, 2007, 52(5): 2189-2195. |
14 | SHIN S H , YUN S , MOON S . A review of current developments in non-aqueous redox flow batteries: Characterization of their membranes for design perspective[J]. RSC Advances, 2013, 3(24): 9095-9116. |
15 | LIU Q , SLEIGHTHOLME A E S , SHINKLE A A , et al . Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315. |
16 | LIU Q , SHINKLE A A , LI Y , et al . Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2010, 12(11): 1634-1637. |
17 | SHINKLE A A , SLEIGHTHOLME A E S , GRIFFITH L D , et al . Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery[J]. Journal of Power Sources, 2012, 206: 490-496. |
18 | ZHANG D , LIU Q , SHI X , et al . Tetrabutylammonium hexafluorophosphate and 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquids as supporting electrolytes for non-aqueous vanadium redox flow batteries[J]. Journal of Power Sources, 2012, 203: 201-205. |
19 | SLEIGHTHOLME A E S , SHINKLE A A , LIU Q , et al . Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries[J]. Journal of Power Sources, 2011, 196(13): 5742-5745. |
20 |
ZHEN Y H , ZHANG C J , YUAN J C , et al . A high-performance all-iron non-aqueous redox flow battery[J]. Journal of Power Sources, 2020, 445, 227331. doi: 10.1016/j.jpowsour.2019.227331 .
doi: 10.1016/j.jpowsour.2019.227331 |
21 | KIM J , KIM K J , PARK M , et al . Development of metal-based electrodes for non-aqueous redox flow batteries[J]. Electrochemistry Communications, 2011, 13(9): 997-1000. |
22 | YAMAMURA T , SHIOKAWA Y , YAMANA H , et al . Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery[J]. Electrochimica Acta, 2002, 48(1): 43-50. |
23 | ZHANG D , LAN H , LI Y . The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery[J]. Journal of Power Sources, 2012, 217: 199-203. |
24 | XING X , ZHANG D , LI Y . A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species[J]. Journal of Power Sources, 2015, 279: 205-209. |
25 | XING X , ZHAO Y , LI Y . A non-aqueous redox flow battery based on tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II)[J]. Journal of Power Sources, 2015, 293: 778-783. |
26 | CAPPILLINO P J , PRATT H D , HUDAK N S , et al . Application of redox non-innocent ligands to non-aqueous flow battery electrolytes[J]. Advanced Energy Materials, 2014, 4(1): 1-4. |
27 | CABRERA P J , YANG X , SUTTIL J A , et al . Complexes containing redox noninnocent ligands for symmetric, multielectron transfer nonaqueous redox flow batteries[J]. The Journal of Physical Chemistry C, 2015, 119(28): 15882-15889. |
28 | LI Z , LI S , LIU S , et al . Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide[J]. Electrochemical and Solid-State Letters, 2011, 14(12): A171-A173. |
29 | BRUSHETT F R , VAUGHEY J T , JANSEN A N . An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials, 2012, 2(11): 1390-1396. |
30 | WEI X , XU W , HUANG J , et al . Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie, 2015, 127(30): 8808-8811. |
31 | WEI X , DUAN W , HUANG J , et al . A high-current, stable nonaqueous organic redox flow battery[J]. ACS Energy Letters, 2016, 1(4): 705-711. |
32 | DUAN W , HUANG J , KOWALSKI J A , et al . “Wine-Dark Sea” in an organic flow battery: Storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability[J]. ACS Energy Letters, 2017, 2(5): 1156-1161. |
33 | YUAN J , ZHANG C , ZHEN Y , et al . Enhancing the performance of an all-organic non-aqueous redox flow battery[J]. Journal of Power Sources, 2019, 443: doi: https://doi.org/10.1016/j.jpowsour.2019.227283. |
34 | KAUR A P , HOLUBOWITCH N E , ERGUN S , et al . A highly soluble organic catholyte for non-aqueous redox flow batteries[J]. Energy Technology, 2015, 3(5): 476-480. |
35 | DUAN W , VEMURI R S , MILSHTEIN J D , et al . A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456. |
36 | XING X , HUO Y , WANG X , et al . A benzophenone-based anolyte for high energy density all-organic redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17488-17494. |
37 | XING X , LIU Q , XU W , et al . All-liquid electroactive materials for high energy density organic flow battery[J]. ACS Applied Energy Materials, 2019, 2(4): 2364-2369. |
38 | WINSBERG J , HAGEMANN T , MUENCH S , et al . Poly(boron-dipyrromethene)—A redox-active polymer class for polymer redox-flow batteries[J]. Chemistry of Materials, 2016, 28(10): 3401-3405. |
39 | BARAN M J , BRATEN M N , MONTOTO E C , et al . Designing redox-active oligomers for crossover-free, nonaqueous redox-flow batteries with high volumetric energy density[J]. Chemistry of Materials, 2018, 30(11): 3861-3866. |
40 | WANG W , XU W , COSIMBESCU L , et al . Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery[J]. Chemical Communications, 2012, 48(53): 6669-6671. |
41 | WEI X , XU W , VIJAYAKUMAR M , et al . TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653. |
42 | WEI X , COSIMBESCU L , XU W , et al . Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials, 2015, 5(1):doi: https://doi.org/10.1002/aenm.201400678. |
[1] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[3] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[4] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[5] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[6] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[7] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[8] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[9] | Rong ZHANG, Shuguang WANG, Xuan SUN, Xiaosong JIANG, Lei HU, Xiaoming YAN, Gaohong HE. Preparation of sulfonated poly(ether ether ketone) amphoteric ion exchange membrane and its application in iron-chromium redox flow battery [J]. Energy Storage Science and Technology, 2021, 10(4): 1305-1310. |
[10] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[11] | Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. |
[12] | YANG Xulai, ZHANG Zheng, CAO Yong, LIU Chengshi, AI Xinping. The structural engineering for achieving high energy density Li-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136. |
[13] | LIU Tengyu, ZHANG Xiong, AN Yabin, LI Chen, MA Yanwei. Research progress on the application of graphene for lithium-ion capacitors [J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043. |
[14] | WANG Qiushi, SUN Miaomiao, LIU Qinghua, YANG Hong CHEN Jingyun, LIU Junqing, LIANG Wenbin. Surface modification of carbon fiber paper for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 714-719. |
[15] | YANG Hong, LEMMON John, MIAO Ping, LIU Qinghua. The effect of carbon cloth electrode material on the performance of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 707-713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||