Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 831-839.doi: 10.19799/j.cnki.2095-4239.2019.0245
Previous Articles Next Articles
CHEN Caixing1, NIU Huichang1(), LU Ruiqiang2, LI Zhao1, LI Lei1, HUANG Xinyan3
Received:
2019-11-04
Revised:
2019-12-03
Online:
2020-05-05
Published:
2019-12-18
Contact:
Huichang NIU
E-mail:niuhuichang@gziit.ac.cn
CLC Number:
CHEN Caixing, NIU Huichang, LU Ruiqiang, LI Zhao, LI Lei, HUANG Xinyan. Electrochemical-thermal coupled simulation and tab optimization of lithium ion battery based on three-dimensional multi-layer structure[J]. Energy Storage Science and Technology, 2020, 9(3): 831-839.
Table 1
Model parameters"
参数 | 铜箔 | 负极 | 隔膜 | 正极 | 铝箔 |
---|---|---|---|---|---|
层厚度 L/μm | 3(half) | 63 | 16 | 86.5 | 7.5(half) |
活性材料体积分数ε s | — | 0.565 Est | — | 0.518 Est | — |
孔隙率ε l | — | 0.33 Est | 0.4 | 0.332 Est | — |
粒径R s /μm | — | 12 | — | 2 | — |
最大浓度c max /mol·m-3 | — | 31370 [ | — | 22806 [ | — |
初始荷电状态SOC0 | — | 0.90 Est | — | 0.04 Est | — |
电荷传递数α | — | 0.5 [ | — | 0.5 [ | — |
反应速率k 0,ref /m2.5 ·mol-0.5 ·s-1 | — | 1.764×10-11 [ | — | 3.626×10-11 [ | — |
反应活化能E aR /kJ·mol-1 | — | 4 [ | — | 4 [ | — |
扩散速率D ref /m2 ·s-1 | — | 3.9×10-14 [ | 1.25×10-15 [ | — | |
扩散活化能E ad /kJ·mol-1 | — | 4 [ | — | 20 [ | — |
电导率σ /S·m-1 | 5.998×107 | 2 [ | — | 0.05 Fit | 3.774×107 |
离子传递数t+ | — | — | 0.363 [ | - | — |
密度ρ /kg·m-3 | 8960 | 1810 | 1250 | 2330 | 2700 |
比热容cp /J·(kg·K)-1 | 385 | 1437 [ | 2055 [ | 1260 [ | 900 |
导热系数λ /W·(m·K)-1 | 400 | 1.04 [ | 0.16 Est | 1.48 [ | 238 |
1 | 任东生, 冯旭宁, 韩雪冰, 等 . 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN Dongsheng , FENG Xuning , HAN Xuebing , et al . Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966 | |
2 | CHEN C , GUO L , NIU H C , et al . Characteristics of thermal runaway propagation of lithium ion battery module induced by thermal abuses in enclosure space[C]//Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, Singapore, F 2020, 2020 Springer Singapore. |
3 | WANG Q , JIANG B , LI B , et al . A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128. |
4 | WU W , WANG S , WU W , et al . A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
5 | PANCHAL S , DINCER I , AGELIN-CHAAB M , et al . Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190-199. |
6 | 巴黎明, 唐堃, 康利斌, 等 . 高功率锂离子电池热效应和结构优化[J]. 电源技术, 2018, 42(11): 1611-4+7. |
BA Liming , TANG Kun , KANG Libin , et al . Thermal effects and structure optimization of high power Li-ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(11): 1611-1614+7 | |
7 | YI J , KIM U S , SHIN C B , et al . Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature[J]. Journal of Power Sources, 2013, 244: 143-148. |
8 | JUNG S , KANG D . Multi-dimensional modeling of large-scale lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 498-509. |
9 | MEI W , CHEN H , SUN J , et al . Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165. |
10 | ZHAO R , GU J , LIU J . An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations[J]. Journal of Power Sources, 2014, 266: 422-432. |
11 | 张志超, 郑莉莉, 杜光超, 等 . 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130. |
ZHANG Zhichao , ZHENG Lili , DU Guangchao , et al . Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130. | |
12 | ALIPOUR M , ESEN E , KIZILEL R . Investigation of 3-D multilayer approach in predicting the thermal behavior of 20 A·h Li-ion cells[J]. Applied Thermal Engineering, 2019, 153: 620-632. |
13 | GHALKHANI M , BAHIRAEI F , ANAZRI G , et al . Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587. |
14 | HUANG Y , LAI H . Effects of discharge rate on electrochemical and thermal characteristics of LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 157: doi: 10.1016/j.applthermaleng.2019.113744. |
15 | MASTALI M , FOREMAN E , MODJTAHEDI A , et al . Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129: 218-230. |
16 | XU M , ZHANG Z , WANG X , et al . Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources, 2014, 256: 233-243. |
17 | XU M , ZHANG Z , WANG X , et al . A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. |
18 | CHIEW J , CHIN C S , TOH W D, et al . A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147: 450-463. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[3] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[4] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[5] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[6] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[7] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[8] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[9] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[10] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[11] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[12] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[13] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[14] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[15] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||