1 |
BAZMI A A, ZAHEDI G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3480-3500.
|
2 |
MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 532-545.
|
3 |
LIU W, LUND H, MATHIESEN B V. Large-scale integration of wind power into the existing Chinese energy system[J]. Energy, 2011, 36(8): 4753-4760.
|
4 |
姚尔人, 王焕然, 席光. 一种压缩空气储能与内燃机技术耦合的冷热电联产系统[J]. 西安交通大学学报, 2016, 50(1): 22-27+40.
|
|
YAO Erren, WANG Huanran. XI Guang, A novel combined cooling heating and power system with coupled compressed air energy storage and combustion engine[J]. Journal of Xi'an Jiaotong University, 2016, 50(01): 22-27+40.
|
5 |
张伟德, 徐钢, 刘文毅, 等. 典型压缩空气蓄能(CAES)电站热力学分析与系统优化[J]. 现代电力, 2013, 30(2): 41-47.
|
|
ZHANG Weide, XU Gang, LIU Wenyi, et al. Therm-odynamic analysis and optimization of a typical compre-ssed air energy storage (CAES) power plant[J]. Modern Electric Power, 2013, 30(2):41-47.
|
6 |
IBRAHIM H, BELMOKHTAR K, GHANDOUR M. Investigation of usage of compressed air energy storage for power generation system improving-application in a microgrid integrating wind energy[J]. Energy Procedia, 2015, 73: 305-316.
|
7 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
8 |
姚尔人, 席光, 王焕然, 等. 一种新型压缩空气与抽水复合储能系统的热力学分析[J]. 西安交通大学学报, 2018, 52(3): 12-18.
|
|
YAO Erren, XI Guang, WANG Huanran, et al. Thermodynamic analysis on a novel compressed-air based pumped hydro energy storage system[J]. Journal of Xi'an Jiaotong University, 2018, 52(3): 12-18.
|
9 |
GUO H, XU Y, CHEN H, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177.
|
10 |
WANG X, YANG C, HUANG M, et al. Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system[J]. Energy Conversion and Management, 2018, 164: 93-101.
|
11 |
张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11): 1991-1996.
|
|
ZHANG Yuan, YANG Ke, LI Xuemei, et al. A cooling, heating and power (CCHP) system based on advanced adiabatic compressed air energy storge(AA-CAES) technology[J]. Journal of Engineering Thermmophysics, 2013, 34(11): 1991-1996.
|
12 |
IBRAHIM H, YOUNÈS R, ILINCA A, et al. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas[J]. Applied Energy, 2010, 87(5): 1749-1762.
|
13 |
YAO E, WANG H, WANG L, et al. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion and Management, 2016, 118: 377-386.
|
14 |
任锐鹏. 孤岛水底压缩空气储能系统研究[D]. 太原: 太原科技大学, 2017.
|
|
REN Ruipeng. Research on underwater compressed air energy storage system by island[D]. Taiyuan: Taiyuan University of Science and Technology, 2017.
|
15 |
张铁鑫. 增压柴油机排气余热回收的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
ZHANG Tiexin. The research on exhaust waste heat recovery of turbocharged diesel engine[D]. Harbin: Harbin Institute of Technology, 2015.
|
16 |
IBRAHIM H, YOUNÈS R, ILINCA A, et al. Potential of a hybrid wind-diesel-compressed air system for nordic remote canadian areas[J]. Energy Procedia, 2011, 6: 795-804.
|
17 |
陈华, 鱼剑琳, 任云锋, 等. 一种新型喷射制冷循环的理论分析[J]. 西安交通大学学报, 2005(11): 55-58.
|
|
CHEN Hua, YU Jianlin, REN Yunfeng, et al. Theoretical analysis on new ejector refrigeration cycle[J]. Journal of Xi'an Jiaotong University, 2005(11): 55-58.
|
18 |
AHMADI P, DINCER I, ROSEN M A. Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system[J]. Energy Conversion and Management, 2013, 76: 282-300.
|
19 |
BAI T, YAN G, YU J. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector[J]. Energy, 2015, 84: 325-335.
|
20 |
林汝谋, 郭栋, 金红光, 等. 分布式冷热电联产系统的能量梯级利用率新准则[J]. 燃气轮机技术, 2010, 23(1): 1-10.
|
|
LIN Rumou, GUO Dong, JIN Hongguang, et al. A new evaluation criterion of distributed energy systems for CCHP: the energy cascade utilization efficiency[J]. Gas Turbine Technology, 2010, 23(1): 1-10.
|
21 |
YAO E, WANG H, WANG L, et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system[J]. Energy Conversion and Management, 2017, 138: 199-209.
|
22 |
ODIBI C, BABAIE M, ZARE A, et al. Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin[J]. Energy Conversion and Management, 2019, 198: 111912.
|