1 |
刘志强, 赵毅, 潘荔. 中外火电节能减排效率分析与比较[J]. 热力发电, 2021, 50(3): 9-18.
|
|
LIU Z Q, ZHAO Y, PAN L. Analysis and comparison of energy saving efficiency and emission reduction efficiency of thermal power between China and foreign countries[J]. Thermal Power Generation, 2021, 50(3): 9-18.
|
2 |
WANG F, DENG S, ZHANG H C, et al. A comprehensive review on high-temperature fuel cells with carbon capture[J]. Applied Energy, 2020, 275: doi: 10.1016/j.apenergy.2020.115342.
|
3 |
李萍萍, 刘长磊, 黄斌, 等. 煤气化燃料电池发电系统模拟及分析[J]. 计算机与应用化学, 2018, 35(12): 988-996.
|
|
LI P P, LIU C L, HUANG B, et al. Process simulation and energy analysis for IGFC system[J]. Computers and Applied Chemistry, 2018, 35(12): 988-996.
|
4 |
LANZINI A, KREUTZ T G, MARTELLI E, et al. Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture[J]. International Journal of Greenhouse Gas Control, 2014, 26: 169-184.
|
5 |
KRÜGER M. Process development for integrated coal gasification solid oxide fuel cells hybrid power plants—Investigations on solid oxide fuel cells/gas turbine hybrid power plants Run on clean coal gas[J]. Applied Energy, 2019, 250: 19-31.
|
6 |
THALLAM THATTAI A, OLDENBROEK V, SCHOENMAKERS L, et al. Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO2 capture—A thermodynamic case study[J]. Applied Thermal Engineering, 2017, 114: 170-185.
|
7 |
孙晓, 李妍. 新能源并网及储能技术研究综述[J]. 通信电源技术, 2020, 37(2): 12-14.
|
|
SUN X, LI Y. Review of new energy grid connection and energy storage technology[J]. Telecom Power Technology, 2020, 37(2): 12-14.
|
8 |
HUY P D, RAMACHANDARAMURTHY V K, YONG J Y, et al. Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage[J]. Energy, 2020, 195: doi: 10.1016/j.energy. 2020.117011.
|
9 |
SINGH B, GYANISH B J. Impact assessment of DG in distribution systems from minimization of total real power loss viewpoint by using optimal power flow algorithms[J]. Energy Reports, 2018, 4: 407-417.
|
10 |
陈曈, 张伟波, 周宇昊, 等. 分布式能源系统常用储能技术综述[J]. 能源与环保, 2019, 41(7): 138-142.
|
|
CHEN T, ZHANG W B, ZHOU Y H, et al. Summary of energy storage technologies commonly used in distributed energy systems[J]. China Energy and Environmental Protection, 2019, 41(7): 138-142.
|
11 |
杨文强, 牟树君, 范为鹏, 等. 一种SOFC发电系统以及SOFC发电系统的控制方法: CN201811063964 .5[P]. [2018-09-12].
|
|
YANG W Q, MU S J, FAN W P, et al. A SOFC power generation system and a control method for SOFC power generation system: CN201811063964 .5[P]. [2018-09-12].
|
12 |
周盟. 燃料电池用DC/DC变换器模型预测控制研究与实现[D]. 武汉: 武汉理工大学, 2019.
|
|
ZHOU M. Research and implementation of model predictive control for DC/DC converter of fuel cell[D]. Wuhan: Wuhan University of Technology, 2019.
|
13 |
汪宏斌. 面向5 kW级固体氧化物燃料电池独立系统的逆变器开发与设计[D]. 武汉: 华中科技大学, 2012.
|
|
WANG H B. The development and design of inverter used in 5 kW-class solid oxide fuel cell independent system[D]. Wuhan: Huazhong University of Science and Technology, 2012.
|
14 |
黄捷. 1 kW固体氧化物燃料电池逆变器的研究[D]. 武汉: 华中科技大学, 2012.
|
|
HUANG J. Design and research of 1 kW solid oxide fuel cell inverter[D]. Wuhan: Huazhong University of Science and Technology, 2012.
|
15 |
魏立明, 吕雪莹. 固体氧化物燃料电池发电系统模型建立及逆变器仿真研究[J]. 电力系统保护与控制, 2016, 44(24): 37-43.
|
|
WEI L M, LÜ X Y. Solid oxide fuel cell power generation system model and study on inverter simulation[J]. Power System Protection and Control, 2016, 44(24): 37-43.
|
16 |
TAHRI A, FADIL H E, RACHID A, et al. A nonlinear controller based on a high gain observer for a cascade boost converter in a fuel cell distributed power supply system[J]. IFAC-PapersOnLine, 2019, 52(29): 91-96.
|
17 |
KANNICHE M, GROS-BONNIVARD R, JAUD P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62.
|