Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (4): 1226-1235.doi: 10.19799/j.cnki.2095-4239.2022.0038
• Special issue of International Outstanding Young Scientists for Energy Storage • Previous Articles Next Articles
Xingxing WANG1(), Ziyu SONG1, Hao WU1, Wenfang FENG1, Zhibin ZHOU1, Heng ZHANG1,2()
Received:
2022-01-19
Revised:
2022-02-17
Online:
2022-04-05
Published:
2022-04-11
Contact:
Heng ZHANG
E-mail:2457609075@qq.com;hengzhang2020@hust.edu.cn
CLC Number:
Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes[J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. | |
3 | QIAO L X, JUDEZ X, ROJO T, et al. Review—Polymer electrolytes for sodium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7aao. |
4 | 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. | |
5 | 张丙凯, 杨卢奕, 李舜宁, 等. 固态电解质中锂离子传输机理研究进展[J]. 电化学, 2021, 27(3): 269-277. |
ZHANG B K, YANG L Y, LI S N, et al. Progress of lithium-ion transport mechanism in solid-state electrolytes[J]. Journal of Electrochemistry, 2021, 27(3): 269-277. | |
6 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
7 | 梁大宇, 包婷婷, 高田慧, 等. 锂离子电池固态电解质界面膜(SEI)的研究进展[J]. 储能科学与技术, 2018, 7(3): 418-423. |
LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface(SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423. | |
8 | 凌志军, 何向明, 李建军, 等. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(4): 459-466. |
LING Z J, HE X M, LI J J, et al. Recent advances of all-solid-state polymer electrolyte for Li-ion batteries[J]. Progress in Chemistry, 2006, 18(4): 459-466. | |
9 | 邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044. |
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. | |
10 | 刘大凡. 新型含氟磺酰亚胺锂盐聚合物固体电解质研究[D]. 武汉: 华中科技大学, 2005. |
LIU D F. Characterizations of lithium perfluoro-alkoxy (-phenoxy) sulfonylimides for solid polymer electrolytes[D]. Wuhan: Huazhong University of Science and Technology, 2005. | |
11 | 何向明, 蒲薇华, 王莉, 等. 锂离子塑性晶体常温固体电解质[J]. 化学进展, 2006, 18(1): 24-29. |
HE X M, PU W H, WANG L, et al. Plastic crystals: An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Progress in Chemistry, 2006, 18(1): 24-29. | |
12 | 崔孟忠, 李竹云, 张洁, 等. 硅氧烷基聚合物电解质[J]. 化学进展, 2008, 20(12): 1987-1997. |
CUI M Z, LI Z Y, ZHANG J, et al. Siloxane-based polymer electrolytes[J]. Progress in Chemistry, 2008, 20(12): 1987-1997. | |
13 | 张恒, 郑丽萍, 聂进, 等. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(6): 1005-1020. |
ZHANG H, ZHENG L P, NIE J, et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26(6): 1005-1020. | |
14 | BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178. |
15 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
16 | KÄRGER J. Fast ion transport in solids[J]. Zeitschrift Für Physikalische Chemie, 1995, 189(2): 274-275. |
17 | ARMAND M, CHABAGNO J, DUCLOT M. Second International Meeting on Solid Electrolytes [C]//St.Andrews, 1978. |
18 | ARMAND M B. Polymer electrolytes[J]. Annual Review of Materials Science, 1986, 16: 245-261. |
19 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
20 | HALLINAN D T Jr, VILLALUENGA I, BALSARA N P. Polymer and composite electrolytes[J]. MRS Bulletin, 2018, 43(10): 759-767. |
21 | 张恒. 含双(氟磺酰)亚胺阴离子的纯固态聚合物电解质的制备、表征及性质[D]. 武汉: 华中科技大学, 2015. |
ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl)imide anion: Synthesis, characterization, and properties[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
22 | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. | |
23 | ZHANG H, FENG W F, ZHOU Z B, et al. Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2014, 256: 61-67. |
24 | ZHANG H, LI L, FENG W F, et al. Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides[J]. Polymer, 2014, 55(16): 3339-3348. |
25 | ZHANG H, LIU C Y, ZHENG L P, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta, 2014, 133: 529-538. |
26 | ZHANG H, LIU C Y, ZHENG L P, et al. Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Electrochimica Acta, 2015, 159: 93-101. |
27 | 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72. |
CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72. | |
28 | 赵辰孜, 袁洪, 卢洋, 等. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997. |
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997. | |
29 | HE X, NI Y X, HOU Y P, et al. Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization[J]. Angewandte Chemie International Edition, 2021, 60(42): 22672-22677. |
30 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemInform, 2004, 104(10): 4303-4418. |
31 | QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458. |
32 | WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs.201901036. |
33 | SHANGGUAN X H, XU G J, CUI Z L, et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): doi: 10.1002/smll.201900269. |
34 | WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763. |
35 | ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943. |
36 | DESHPANDE V K, SINGH K. Effect of LiX(X=F, Cl, Br, I) and Na2SO4 on the electrical conducticity of Li2SO4: Li2CO3 eutectic[J]. Solid State Ionics, 1983, 8(4): 319-322. |
37 | HENDERSON W A. Crystallization kinetics of Glyme-LiX and PEO-LiX polymer electrolytes[J]. Macromolecules, 2007, 40(14): 4963-4971. |
38 | NEWMAN G H, FRANCIS R W, GAINES L H, et al. Hazard investigations of LiClO4/dioxolane electrolyte[J]. Journal of the Electrochemical Society, 1980, 127(9): 2025-2027. |
39 | ROBITAILLE C D, FAUTEUX D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(2): 315-325. |
40 | BANDARA L R A K, DISSANAYAKE M A K L, MELLANDER B E. Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes[J]. Electrochimica Acta, 1998, 43(10/11): 1447-1451. |
41 | SØRENSEN P R, JACOBSEN T. Phase diagram and conductivity of the polymer electrolyte: PEO_RLiCF3SO3[J]. Polymer Bulletin, 1983, 9(1/2/3): 47-51. |
42 | WESTON J E, STEELE B C H. Thermal history—conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes[J]. Solid State Ionics, 1981, 2(4): 347-354. |
43 | ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362(6416): 137-139. |
44 | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry-A European Journal, 2011, 17(51): 14326-14346. |
45 | MEUSSDORFFER J N N. Bisperfluorakansulfonylimide (RfSO2)2NH[J]. Chemiker Zeitung, 1972, 96: 582. |
46 | ARMAND M, MOURSLI F E K C, Agence Nationale de Valorisation de la Recherche[R]. France. 1983. |
47 | ZHANG H, CHEN F F, CARRASCO J. Nanoscale modelling of polymer electrolytes for rechargeable batteries[J]. Energy Storage Materials, 2021, 36: 77-90. |
48 | 陈兵兵, 赵井文, 马君, 等. PEO/LITFSI固态电解质的离子传输与压力构效关系[J]. 储能科学与技术, 2018, 7(3): 431-436. |
CHEN B B, ZHAO J W, MA J, et al. Relationship of ion transport and pressure in PEO/LITFSI solid electrolytes[J]. Energy Storage Science and Technology, 2018, 7(3): 431-436. | |
49 | CHEN D D, HUANG S, ZHONG L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002/adfm.201907717. |
50 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029. |
51 | MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)-LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7c38. |
52 | WANG C, ZHANG H R, DONG S M, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte[J]. Chemistry of Materials, 2020, 32(21): 9167-9175. |
53 | WEN B, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586. |
54 | XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): doi: 10.1002/adfm.202007598. |
55 | ZHANG H, ARMAND M. History of solid polymer electrolyte-based solid-state lithium metal batteries: A personal account[J]. Israel Journal of Chemistry, 2021, 61(1/2): 94-100. |
56 | GORECKI W, ROUX C, CLÉMANCEY M, et al. NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2 n+1)(SO2CmF2 m+1)[J]. ChemPhysChem, 2002, 3(7): 620-625. |
57 | ZHANG H, LI C M, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815. |
58 | ESHETU G G, JUDEZ X, LI C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140(31): 9921-9933. |
59 | TONG B, WANG P, MA Q, et al. Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li || LiFePO4 cell: The impact of anionic structure[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115519. |
60 | ZHANG H, FENG W F, NIE J, et al. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery[J]. Journal of Fluorine Chemistry, 2015, 174: 49-61. |
61 | HOWELLS R D, LAMANNA W M, FANTA A D, et al. Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides: US5874616[P]. 1999-02-23. |
62 | HAN H B, ZHOU Y X, LIU K, et al. Efficient preparation of (fluorosulfonyl) (pentafluoroethanesulfonyl)imide and its alkali salts[J]. Chemistry Letters, 2010, 39(5): 472-474. |
63 | HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268. |
64 | APPEL R,EISENHAUER G. Die synthese des imidobisschwefelsäurefluorids, HN(SO2F)2[J]. Chemische Berichte, 1962, 95(1): 246-248. |
65 | MICHOT C, ARMAND M, SANCHEZ J Y, CHOQUETTE Y, GAUTHIER M, Ionic conducting material having good anticorrosive properties: WO 9526056A1[P].1995-09-28. |
66 | HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. |
67 | JUDEZ X, ZHANG H, LI C M, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. The Journal of Physical Chemistry Letters, 2017, 8(9): 1956-1960. |
68 | ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N]versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188. |
69 | FANG Z, MA Q, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4 F9 SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289. |
70 | TONG B, HUANG J, ZHOU Z B, et al. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li [(CF3SO2)(n-C4F9SO2)N]-based electrolyte[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201704841. |
71 | TONG B, WANG J W, LIU Z J, et al. (CH3)3Si-N [(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode[J]. Journal of Power Sources, 2018, 400: 225-231. |
72 | ZHOU S, HAN H, NIE J, et al. Improving the high-temperature resilience of LiMn2O4 based batteries: LiFNFSI an effective salt[J]. Journal of The Electrochemical Society, 2012, 159 (8): A1158-A1164. |
73 | SONG Z Y, WANG X X, WU H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective[J]. Journal of Power Sources Advances, 2022, 14: doi:10.1016/j.powera.2022.100088. |
74 | SANTIAGO A, JUDEZ X, CASTILLO J, et al. Improvement of lithium metal polymer batteries through a small dose of fluorinated salt[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6133-6138. |
75 | GARLYAUSKAYTE R Y, BEZDUDNY A V, MICHOT C, et al. Efficient synthesis of N-(trifluoromethylsulfonyl)trifluoromethanesulfonimidoyl fluoride-the key agent in the preparation of compounds with superstrong electron-withdrawing groups and strong acidic properties[J]. J Chem Soc, Perkin Trans 1, 2002(16): 1887-1889. |
76 | GARLYAUSKAYTE R Y, CHERNEGA A N, MICHOT C, et al. Synthesis of new organic super acids—N-(trifluoromethylsulfonyl)imino derivatives of trifluoromethanesulfonic acid and bis(trifluoromethylsulfonyl)imide[J]. Organic & Biomolecular Chemistry, 2005, 3(12): 2239. |
77 | KÜTT A, RODIMA T, SAAME J, et al. Equilibrium acidities of superacids[J]. The Journal of Organic Chemistry, 2011, 76(2): 391-395. |
78 | ZHANG H, SONG Z Y, YUAN W M, et al. Impact of negative charge delocalization on the properties of solid polymer electrolytes[J]. ChemElectr℃hem, 2021, 8(7): 1322-1328. |
79 | ZHANG H, HAN H B, CHENG X R, et al. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2015, 296: 142-149. |
80 | MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525. |
81 | MCLIN M G, ANGELL C A. Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000[J]. Solid State Ionics, 1992, 53/54/55/56: 1027-1036. |
82 | ANGELL C A, FAN J, LIU C L, et al. Li-conducting ionic rubbers for lithium battery and other applications[J]. Solid State Ionics, 1994, 69(3/4): 343-353. |
83 | FORSYTH M, SUN J Z, MACFARLANE D R, et al. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341-350. |
84 | WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602. |
85 | ZHANG H, CHEN F F, LAKUNTZA O, et al. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion[J]. Angewandte Chemie International Edition, 2019, 58(35): 12070-12075. |
86 | ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie International Edition, 2019, 58(23): 7829-7834. |
87 | ZHANG H, OTEO U, JUDEZ X, et al. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702. |
88 | QIAO L X, OTEO U, ZHANG Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries[J]. Energy Storage Materials, 2020, 32: 225-233. |
[1] | MA Qiang1,2, QI Xinguo1, RONG Xiaohui1, HU Yongsheng1, ZHOU Zhibin2, LI Hong1, . Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries#br# [J]. Energy Storage Science and Technology, 2016, 5(5): 713-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||