Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3776-3786.doi: 10.19799/j.cnki.2095-4239.2022.0465
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qingwen GAO(), Zhihao YANG, Wenpeng LI, Wenjia WU(), Jingtao WANG
Received:
2022-08-22
Revised:
2022-09-19
Online:
2022-12-05
Published:
2022-12-29
Contact:
Wenjia WU
E-mail:1966736319@qq.com;wenjiawu@zzu.edu.cn
CLC Number:
Qingwen GAO, Zhihao YANG, Wenpeng LI, Wenjia WU, Jingtao WANG. Preparation and performance of Co2+-doped CeO2-based laminar composite solid-state electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 3776-3786.
Fig. 12
(a) Galvanostatic cycling performance of lithium symmetric cells with SPE and L-CSE under increased current density and the charge/discharge duration of 1 h; (b) Galvanostatic cycling performance of lithium symmetric cells with SPE and L-CSE under different current density and the charge/discharge duration of 30 min; (c) The corresponding SEM images of Li electrode surface after cycling"
1 | FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
2 | 邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044. |
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. | |
3 | 潘迪, 孔江榕, 刘欣楠, 等. 湿化学法制备石榴石型固态电解质Li7La3Zr2O12[J]. 化工进展, 2021, 40(S2): 334-339. |
PAN D, KONG J R, LIU X N, et al. Preparation Li7La3Zr2O12 garnet solid-state electrolyte by wet-chemical technique[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 334-339. | |
4 | 贺子建, 刘亚飞, 陈彦彬. 无机有机复合固态电解质研究进展[J]. 山东化工, 2020, 49(12): 58-59. |
HE Z J, LIU Y F, CHEN Y B. Research progress of inorganic-organic composite solid electrolyte[J]. Shandong Chemical Industry, 2020, 49(12): 58-59. | |
5 | WANG Y J, PAN Y, KIM D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes[J]. Journal of Power Sources, 2006, 159(1): 690-701. |
6 | 习磊, 张德超, 刘军. 应用于全固态锂电池的复合固态电解质研究进展[J]. 中国材料进展, 2021, 40(8): 607-617. |
XI L, ZHANG D C, LIU J. Research progress of composite solid electrolytes for all-solid-state lithium batteries[J]. Materials China, 2021, 40(8): 607-617. | |
7 | DING L, LI L B, LIU Y C, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3(4): 296-302. |
8 | THEBO K H, QIAN X T, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9: 1486. |
9 | WU X L, CUI X L, WU W J, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529. |
10 | LIU G Z, SHEN J, LIU Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548: 548-558. |
11 | ZHAI P F, PENG N, SUN Z Y, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2020, 8(44): 23344-23353. |
12 | JIANG S H, ZHANG R Y, LIU H X, et al. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(14): 6461-6466. |
13 | DESHPANDE S, PATIL S, KUCHIBHATLA S V, et al. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide[J]. Applied Physics Letters, 2005, 87(13): doi: 10.1063/1.2061873. |
14 | CHEN S Q, LI L P, HU W B, et al. Anchoring high-concentration oxygen vacancies at interfaces of CeO2- x/Cu toward enhanced activity for preferential CO oxidation[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22999-23007. |
15 | AO X, WANG X T, TAN J W, et al. Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler[J]. Nano Energy, 2021, 79: doi:10.1016/j.nanoen.2020.105475. |
16 | CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): doi: 10.1002/aenm.202000049. |
17 | LI W W, ZHANG S P, WANG B R, et al. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23874-23882. |
18 | SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18(5): 3104-3112. |
19 | WENG Y T, LIU H W, PEI A, et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte[J]. Nature Communications, 2019, 10: 5824. |
20 | SHIM J, KIM H J, KIM B G, et al. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries[J]. Energy & Environmental Science, 2017, 10(9): 1911-1916. |
21 | WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16. |
22 | LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): doi: 10.1002/adfm.202009925. |
[1] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[2] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[3] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[4] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[5] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[6] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[7] | Fan WANG, Zhao DU, Kang YANG, Xinyi WANG, Rukun HU, Xiaohu YANG. Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3667-3673. |
[8] | Jun ZHANG, Fengxia ZHAO, Zhao DU, Kang YANG, Yuanji LI, Xiaohu YANG. Influence of tank shape on heat storage performance: A numerical study [J]. Energy Storage Science and Technology, 2022, 11(11): 3674-3680. |
[9] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[10] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[11] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[12] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[13] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[14] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. |
[15] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||