Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 878-888.doi: 10.19799/j.cnki.2095-4239.2022.0672
• Energy Storage System and Engineering • Previous Articles Next Articles
Qihui YU1(), Zhigang WEI1, Guoxin SUN1(), Liang LU2
Received:
2022-11-14
Revised:
2022-11-24
Online:
2023-03-05
Published:
2023-04-14
Contact:
Guoxin SUN
E-mail:919452849@qq.com;sunguoxin@imust.edu.cn
CLC Number:
Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system[J]. Energy Storage Science and Technology, 2023, 12(3): 878-888.
1 | 丁志康, 王维俊, 米红菊, 等. 新能源发电系统中储能技术现状与分析[J]. 当代化工, 2020, 49(7): 1519-1522. |
DING Z K, WANG W J, MI H J, et al. Current situation and analysis of energy storage technology in new energy power generation system[J]. Contemporary Chemical Industry, 2020, 49(7): 1519-1522. | |
2 | 周喜超. 电力储能技术发展现状及走向分析[J]. 热力发电, 2020, 49(8): 7-12. |
ZHOU X C. Development status and trend analysis of electric energy storage technology[J]. Thermal Power Generation, 2020, 49(8): 7-12. | |
3 | DE SISTERNES F J, JENKINS J D, BOTTERUD A. The value of energy storage in decarbonizing the electricity sector[J]. Applied Energy, 2016, 175: 368-379. |
4 | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. |
5 | 何子伟, 罗马吉, 涂正凯. 等温压缩空气储能技术综述[J]. 热能动力工程, 2018, 33(2): 1-6. |
HE Z W, LUO M J, TU Z K. Survey of the isothermal compressed air energy storage technologies[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2): 1-6. | |
6 | QIN C, LOTH E. Liquid piston compression efficiency with droplet heat transfer[J]. Applied Energy, 2014, 114: 539-550. |
7 | 何青, 王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电, 2022(8): 11-19. |
HE Q, WANG K. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation, 2022(8): 11-19. | |
8 | IGOBO O N, DAVIES P A. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion[J]. Energy, 2014, 70: 22-34. |
9 | 李敏. 活塞式压缩机喷水内冷却的实验研究[J]. 流体工程, 1993(7): 10-13, 63. |
LI M. Experimental research of internal water-spray cooling in reciprocating compressor[J]. Fluid Machinery, 1993(7): 10-13, 63. | |
10 | ZHANG C, LI P Y, VAN DE VEN J D, et al. Design analysis of a liquid-piston compression chamber with application to compressed air energy storage[J]. Applied Thermal Engineering, 2016, 101: 704-709. |
11 | RICE A T, LI P Y, SANCKENS C J. Optimal efficiency-power tradeoff for an air compressor/expander[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(2): doi: 10.1115/1.4037652. |
12 | MCBRIDE T O, BOLLINGER B, BESSETTE J, et al. Systems and methods for foam-based heat exchange during energy storage and recovery using compressed gas: US20130074941[P]. 2013-03-28. |
13 | PATIL V C, RO P I. Experimental study of heat transfer enhancement in liquid piston compressor using aqueous foam[J]. Applied Thermal Engineering, 2020, 164: doi: 10.1016/j.applthermaleng.2019.114441. |
14 | CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: The Current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628. |
15 | ZHANG X J, XU Y J, ZHOU X Z, et al. A near-isothermal expander for isothermal compressed air energy storage system[J]. Applied Energy, 2018, 225: 955-964. |
16 | YU Q H, LI X D, GENG Y Q, et al. Study on quasi-isothermal expansion process of compressed air based on spray heat transfer[J]. Energy Reports, 2022, 8: 1995-2007. |
17 | YU Q H, WANG Q C, TAN X, et al. Water spray heat transfer gas compression for compressed air energy system[J]. Renewable Energy, 2021, 179: 1106-1121. |
18 | 蔡茂林, 孙珺朋, 张波, 等. 单缸气动发动机的数学建模与实验验证[J]. 液压与气动, 2015(9): 85-88. |
CAI M L, SUN J P, ZHANG B, et al. Modelling and experimental verification of a single-cylinder compressed air engine[J]. Chinese Hydraulics & Pneumatics, 2015(9): 85-88. | |
19 | DIB G, HABERSCHILL P, RULLIÈRE R, et al. Thermodynamic investigation of quasi-isothermal air compression/expansion for energy storage[J]. Energy Conversion and Management, 2021, 235: doi: 10.1016/j.enconman.2021.114027. |
20 | 蔡茂林. 现代气动技术理论与实践 第一讲: 气动元件的流量特性[J]. 液压气动与密封, 2007, 27(2): 44-48. |
CAI M L. Theory and practice of modern pneumatic technology lecture 1: Flow characteristics of pneumatic components[J]. Hydraulics Pneumatics & Seals, 2007, 27(2): 44-48. | |
21 | ODUKOMAIYA A, ABU-HEIBA A, GLUESENKAMP K R, et al. Thermal analysis of near-isothermal compressed gas energy storage system[J]. Applied Energy, 2016, 179: 948-960. |
22 | CHEN H, PENG Y H, WANG Y L, et al. Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump/turbine and spray cooling[J]. Energy Conversion and Management, 2020, 204: doi: 10.1016/j.enconman.2019.112293. |
23 | ZHAO P, LAI Y Q, XU W P, et al. Performance investigation of a novel near-isothermal compressed air energy storage system with stable power output[J]. International Journal of Energy Research, 2020, 44(14): 11135-11151. |
24 | 刘乃玲, 张旭, 杨建坤. 压力式细雾喷嘴流量特性实验研究[J]. 暖通空调, 2005, 35(9): 119-121. |
LIU N L, ZHANG X, YANG J K. Experimental research on flow rate characteristics of fine mist pressure nozzles[J]. Hv & Ac, 2005, 35(9): 119-121. | |
25 | 李豪豪. 气缸密封圈动态摩擦特性仿真及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LI H H. Simulation and experimental study on dynamic friction characteristics of cylinder seal[D]. Harbin: Harbin Institute of Technology, 2019. | |
26 | 王佳, 贾冠伟, 许未晴, 等. 微米级水雾准等温压缩方法的能耗分析[J]. 液压与气动, 2018(6): 113-118. |
WANG J, JIA G W, XU W Q, et al. Energy consumption analysis of quasi-isothermal compression method for micron-sized water spray[J]. Chinese Hydraulics & Pneumatics, 2018(6): 113-118. | |
27 | HOU X C, ZHANG H G, YU F, et al. Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system[J]. Applied Energy, 2017, 208: 1297-1307. |
[1] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[2] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[3] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[4] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[5] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[6] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[7] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[8] | Ran XU, Zhitao ZUO, Ao LI, Xia WANG, Ming CHEN, Haisheng CHEN. Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient [J]. Energy Storage Science and Technology, 2021, 10(5): 1556-1564. |
[9] | Shan HU, Chang LIU, Yujie XU, Haisheng CHEN, Huan GUO. Thermo-economic analysis of compressed air energy storage under peak load shaving condition [J]. Energy Storage Science and Technology, 2021, 10(5): 1607-1613. |
[10] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[11] | Xiaolu WANG, Huan GUO, Hualiang ZHANG, Yujie XU, Yingjun LIU, Haisheng CHEN. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants [J]. Energy Storage Science and Technology, 2021, 10(2): 598-610. |
[12] | Zhongming JIANG, Jing GUO, Dong TANG. A thermodynamic model of compressed humid air within an underground rock cavern for compressed air energy storage [J]. Energy Storage Science and Technology, 2021, 10(2): 638-646. |
[13] | Fa WAN, Zhongming JIANG, Dong TANG. The influence of CAES reservoir design parameters on thermodynamic properties [J]. Energy Storage Science and Technology, 2021, 10(1): 370-378. |
[14] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
[15] | Xuqing YANG, Zhenzhu YU, Xiaohu YANG, Zhan LIU. Combined heating and power system coupled with compressed air energy storage and absorption heat pump cycle [J]. Energy Storage Science and Technology, 2021, 10(1): 362-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||