Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 12-23.doi: 10.19799/j.cnki.2095-4239.2023.0707
Previous Articles Next Articles
Xixiang XU1,2(), Yue ZHAO1,2, Mingyue RUAN1,2, Qiang LI1,2()
Received:
2023-10-12
Revised:
2023-11-01
Online:
2024-01-05
Published:
2024-01-22
Contact:
Qiang LI
E-mail:2021020288@qdu.edu.cn;liqiang@qdu.edu.cn
CLC Number:
Xixiang XU, Yue ZHAO, Mingyue RUAN, Qiang LI. CoO lithium storage mechanism revealed based on magnetic measurement[J]. Energy Storage Science and Technology, 2024, 13(1): 12-23.
Fig. 3
Samples magnetic characterization(a) CoO,CoO@20min,and CoO@40min 300K M-H curves; (b) localized magnification of 300 K M-H curves for three samples; (c) CoO, CoO@20min, CoO@40min 5 K M-H curves; (d) localized magnification of 5 K M-H curves for three samples; (e) ZFC/FC curves of CoO under 500 Oe; (f) CoO, CoO@20min, CoO@40min ZFC/FC curves comparison maps"
Fig. 9
Schematic of spin-polarization mechanism and zoned in situ magnetometry CV test at Co/Li2O interface(a) schematic of the density of states (DOS) changes before and after spin-polarized electrons filling on the Co particle surface, and the EF is the Fermi energy; In situ magnetometry CV test pattern of CoO over the potential range of (b) 1.2—1.7 V, (d) 0.01—0.75 V respectively; (c)、(e) their corresponding CV patterns; The applied magnetic field is 3 T and the scan rate is 0.5 mV/s"
1 | DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6(2): 123-134. |
2 | XIAO J E, SHI F F, GLOSSMANN T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries[J]. Nature Energy, 2023, 8(4): 329-339. |
3 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. |
4 | JI S P, SONG C Y, LI J F, et al. Metal phosphides embedded with in situ-formed metal phosphate impurities as buffer materials for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2021, 11(40): 169-190. |
5 | BEAK M, PARK J, PARK S, et al. Understanding the effect of nonmetallic impurities in regenerated cathode materials for lithium-ion battery recycling by tracking down impurity elements[J]. Journal of Hazardous Materials, 2022, 425: 127907. |
6 | XIONG F Y, TAN S S, YAO X H, et al. Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges[J]. Materials Today, 2021, 45: 169-190. |
7 | HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174. |
8 | TAN D H S, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nature Nanotechnology, 2020, 15(3): 170-180. |
9 | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. |
10 | LIU D Q, SHADIKE Z, LIN R Q, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Advanced Materials, 2019, 31(28): e1806620. |
11 | REN H X, LI Y, NI Q, et al. Unraveling anionic redox for sodium layered oxide cathodes: Breakthroughs and perspectives[J]. Advanced Materials, 2022, 34(8): e2106171. |
12 | TAN J A, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046. |
13 | LI X K, ZHANG L Q, LIU H J, et al. Magnetic measurements applied to energy storage (adv. energy mater. 24/2023)[J]. Advanced Energy Materials, 2023, 13(24): 2300927. |
43 | CHEN C C, FU L J, MAIER J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors[J]. Nature, 2016, 536(7615): 159-164. |
44 | FU L J, CHEN C C, SAMUELIS D, et al. Thermodynamics of lithium storage at abrupt junctions: Modeling and experimental evidence[J]. Physical Review Letters, 2014, 112(20): 208301. |
45 | LARUELLE S, GRUGEON S, POIZOT P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society, 2002, 149(5): A627. |
46 | GRUGEON S, LARUELLE S, DUPONT L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sciences, 2003, 5(6): 895-904. |
47 | ZHANG L J, HU P, ZHAO X Y, et al. Controllable synthesis of core-shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(45): 18279-18283. |
48 | SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 6(8): 2280-2301. |
14 | ZHAO Z, LIU H, XU X, et al. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
15 | CHERNOVA N A, NOLIS G M, OMENYA F O, et al. What can we learn about battery materials from their magnetic properties?[J]. Journal of Materials Chemistry, 2011, 21(27): 9865-9875. |
16 | AIT SALAH A, ZAGHIB K, MAUGER A, et al. Magnetic studies of the carbothermal effect on LiFePO4[J]. Physica Status Solidi (a), 2006, 203(1): R1-R3. |
17 | AIT SALAH A, MAUGER A, ZAGHIB K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. Journal of the Electrochemical Society, 2006, 153(9): A1692. |
18 | CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693. |
19 | LI Q, LI H S, XIA Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83. |
20 | LI H S, HU Z Q, XIA Q T, et al. Lithium-ion batteries: Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries[J]. Advanced Materials, 2021, 33(12): doi: 10.1002/adma.202170093. |
21 | LI H A, WU X Q, WANG P, et al. Interface engineering of hollow CoO/Co4S3@CoO/Co4S3 heterojunction for highly stable and efficient electrocatalytic overall water splitting[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 13112-13124. |
22 | KUMAR A, DRAGOE D, BERARDAN D, et al. Thermoelectric properties of high-entropy rare-earth cobaltates[J]. Journal of Materiomics, 2023, 9(1): 191-196. |
23 | KUMAR R, SAHOO S, TAN W K, et al. Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor[J]. Journal of Energy Storage, 2021, 40: 102724. |
24 | DAI K Q, ZHANG N, ZHANG L L, et al. Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting[J]. Chemical Engineering Journal, 2021, 414: 128804. |
25 | WANG H Z, ZHAO L Y, ZHANG H, et al. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry[J]. Energy & Environmental Science, 2022, 15(1): 311-319. |
26 | BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. |
27 | MORENO-PINEDA E, WERNSDORFER W. Measuring molecular magnets for quantum technologies[J]. Nature Reviews Physics, 2021, 3(9): 645-659. |
28 | AXMANN P, STINNER C, WOHLFAHRT-MEHRENS M, et al. Nonstoichiometric LiFePO4: Defects and related properties[J]. Chemistry of Materials, 2009, 21(8): 1636-1644. |
29 | JAUCH W, REEHUIS M, BLEIF H J, et al. Crystallographic symmetry and magnetic structure of CoO[J]. Physical Review B, 2001, 64(5): 052102. |
30 | PENG D L, SUMIYAMA K, HIHARA T, et al. Magnetic properties of monodispersed Co/CoO clusters[J]. Physical Review B, 2000, 61(4): 3103-3109. |
31 | BILLAS I M L, CHÂTELAIN A, DE HEER W A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters[J]. Science, 1994, 265(5179): 1682-1684. |
32 | BERNEVIG B A, FELSER C, BEIDENKOPF H. Progress and prospects in magnetic topological materials[J]. Nature, 2022, 603(7899): 41-51. |
33 | HU J M, CHEN L Q, NAN C W. Multiferroic heterostructures integrating ferroelectric and magnetic materials[J]. Advanced Materials, 2016, 28(1): 15-39. |
34 | SONG C, CUI B, LI F, et al. Recent progress in voltage control of magnetism: Materials, mechanisms, and performance[J]. Progress in Materials Science, 2017, 87: 33-82. |
35 | TOURNUS F, TAMION A. Magnetic susceptibility curves of a nanoparticle assembly Ⅱ. Simulation and analysis of ZFC/FC curves in the case of a magnetic anisotropy energy distribution[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(9): 1118-1127. |
36 | LIVESEY K L, RUTA S, ANDERSON N R, et al. Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves[J]. Scientific Reports, 2018, 8: 11166. |
37 | WEISSMAN M B. What is a spin glass? A glimpse via mesoscopic noise[J]. Reviews of Modern Physics, 1993, 65(3): 829-839. |
38 | ANTÓN R L, GONZÁLEZ J A, ANDRÉS J P, et al. High-vacuum annealing reduction of Co/CoO nanoparticles[J]. Nanotechnology, 2014, 25(10): 105702. |
39 | BLATT M, WISEMAN S, DOMANY E. Superparamagnetic clustering of data[J]. Physical Review Letters, 1996, 76(18): 3251-3254. |
40 | LIPP J, BANERJEE R, PATWARY M F, et al. Extension of rietveld refinement for benchtop powder XRD analysis of ultrasmall supported nanoparticles[J]. Chemistry of Materials, 2022, 34(18): 8091-8111. |
41 | ZHUKOVSKII Y F, BALAYA P, KOTOMIN E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters, 2006, 96(5): 058302. |
42 | FU L J, CHEN C C, MAIER J. Interfacial mass storage in nanocomposites[J]. Solid State Ionics, 2018, 318: 54-59. |
[1] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||