1 |
DIOUF B, PODE R. Potential of lithium-ion batteries in renewable energy[J]. Renewable Energy, 2015, 76: 375-380. DOI: 10.1016/j.renene.2014.11.058.
|
2 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a.
|
3 |
JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. DOI: 10.1149/2.0021707jes.
|
4 |
BELHAROUAK I, SUN Y K, LIU J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications[J]. Journal of Power Sources, 2003, 123(2): 247-252. DOI: 10.1016/S0378-7753(03)00529-9.
|
5 |
WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302. DOI: 10.1021/cr020731c.
|
6 |
YABUUCHI N, MAKIMURA Y, OHZUKU T. Solid-state chemistry and electrochemistry of LiCo1∕3Ni1∕3Mn1∕3O2 for advanced lithium-ion batteries[J]. Journal of the Electrochemical Society, 2007, 154(4): A314. DOI: 10.1149/1.2455585.
|
7 |
KIM M G, SHIN H J, KIM J H, et al. XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in Li-ion battery cathode Li[Ni1∕3Co1∕3Mn1∕3]O2 material[J]. Journal of the Electrochemical Society, 2005, 152(7): A1320. DOI: 10.1149/1.1926647.
|
8 |
NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. DOI: 10.1016/j.jpowsour.2013.01.063.
|
9 |
LUO Z J, FAN D D, LIU X L, et al. High performance silicon carbon composite anode materials for lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1): 16-21. DOI: 10.1016/j.jpowsour.2008.12.068.
|
10 |
LIANG T, KNAPPETT J A. Centrifuge modelling of the influence of slope height on the seismic performance of rooted slopes[J]. Géotechnique, 2017, 67(10): 855-869. DOI: 10.1680/jgeot.16.p.072.
|
11 |
FUCHSBICHLER B, STANGL C, KREN H, et al. High capacity graphite-silicon composite anode material for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(5): 2889-2892. DOI: 10.1016/j.jpowsour.2010.10.081.
|
12 |
杨阳. 退役锂电池梯级利用、容量衰减及回收流程研究[D]. 长沙: 湖南大学, 2019. DOI: 10.27135/d.cnki.ghudu.2019.003985.
|
|
YANG Y. Study on cascade utilization, capacity attenuation and recovery process of retired lithium batteries[D]. Changsha: Hunan University, 2019. DOI: 10.27135/d.cnki.ghudu.2019.003985.
|
13 |
CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. DOI: 10.1038/nnano.2007.411.
|
14 |
葛昊, 李哲, 张剑波. 锂离子电池开路电压曲线形状与多阶段容量损失[J]. 储能科学与技术, 2019, 8(6): 1089-1095. DOI: 10.12028/j.issn.2095-4239.2019.0098.
|
|
GE H, LI Z, ZHANG J B. Multi-stage capacity loss of lithium-ion batteries originating from the multi-slope nature of open circuit voltage curves[J]. Energy Storage Science and Technology, 2019, 8(6): 1089-1095. DOI: 10.12028/j.issn.2095-4239.2019.0098.
|
15 |
潘伟民. 高温下镍钴铝/石墨锂电池全生命周期老化机理研究[J]. 农业装备与车辆工程, 2024, 62(3): 116-120.
|
|
PAN W M. Research on aging mechanism of NCA/Graphite lithium battery at high temperature on full cycle life[J]. Agricultural Equipment & Vehicle Engineering, 2024, 62(3): 116-120.
|
16 |
李浩强, 范茂松, 周自强, 等. 三元锂离子电池的容量跳水机理研究[J]. 电源技术, 2021, 45(2): 153-157, 162. DOI: 10.3969/j.issn.1002-087X.2021.02.004.
|
|
LI H Q, FAN M S, ZHOU Z Q, et al. Research on capacity diving mechanism of ternary lithium-ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(2): 153-157, 162. DOI: 10.3969/j.issn.1002-087X.2021.02.004.
|
17 |
KRAUSE F C, RUIZ J P, JONES S C, et al. Performance of commercial Li-ion cells for future NASA missions and aerospace applications[J]. Journal of the Electrochemical Society, 2021, 168(4): 040504. DOI: 10.1149/1945-7111/abf05f.
|
18 |
HEENAN T M M, JNAWALI A, KOK M D R, et al. An advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes[J]. Journal of the Electrochemical Society, 2020, 167(14): 140530. DOI: 10.1149/1945-7111/abc4c1.
|
19 |
CHOI W, SHIN H C, KIM J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology, 2020, 11(1): 1-13. DOI: 10.33961/jecst.2019.00528.
|
20 |
陈芬放. 高能量密度NCA正极锂离子电池老化过程产热特性研究[D]. 杭州: 浙江大学, 2021. DOI: 10.27461/d.cnki.gzjdx.2021.002479.
|
|
CHEN F F. Study on heat generation characteristics of high energy density NCA cathode lithium ion battery during aging[D]. Hangzhou: Zhejiang University, 2021. DOI: 10.27461/d.cnki.gzjdx.2021.002479.
|
21 |
杨小龙, 罗卫, 樵燊, 等. 镍钴铝三元锂电池容量"跳水" 机理研究[J]. 湖南大学学报(自然科学版), 2023, 50(6): 171-179. DOI: 10.16339/j.cnki.hdxbzkb.2023305.
|
|
YANG X L, LUO W, QIAO S, et al. Research on capacity plunge mechanisms of NCA/graphite lithium-ion batteries[J]. Journal of Hunan University (Natural Sciences), 2023, 50(6): 171-179. DOI: 10.16339/j.cnki.hdxbzkb.2023305.
|
22 |
ANSEÁN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321: 201-209. DOI: 10.1016/j.jpowsour.2016.04.140.
|
23 |
XIE W L, HE R, GAO X L, et al. Degradation identification of LiNi0.8Co0.1Mn0.1O2/graphite lithium-ion batteries under fast charging conditions[J]. Electrochimica Acta, 2021, 392: 138979. DOI: 10. 1016/j.electacta.2021.138979.
|
24 |
OHZUKU T, IWAKOSHI Y, SAWAI K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. Journal of the Electrochemical Society, 1993, 140(9): 2490-2498. DOI: 10.1149/1.2220849.
|
25 |
ZILBERMAN I, STURM J, JOSSEN A. Reversible self-discharge and calendar aging of 18650 nickel-rich, silicon-graphite lithium-ion cells[J]. Journal of Power Sources, 2019, 425: 217-226. DOI: 10.1016/j.jpowsour.2019.03.109.
|
26 |
ZILBERMAN I, LUDWIG S, JOSSEN A. Cell-to-cell variation of calendar aging and reversible self-discharge in 18650 nickel-rich, silicon–graphite lithium-ion cells[J]. Journal of Energy Storage, 2019, 26: 100900. DOI: 10.1016/j.est.2019.100900.
|
27 |
LI T Y, YUAN X Z, ZHANG L, et al. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries[J]. Electrochemical Energy Reviews, 2020, 3(1): 43-80. DOI: 10.1007/s41918-019-00053-3.
|
28 |
马天翼, 苏素, 张宗, 等. 计算机断层扫描技术在锂离子电池检测中的应用研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 133-139. DOI: 10.3969/j.issn.1674-8425(z).2020.02.019.
|
|
MA T Y, SU S, ZHANG Z, et al. Application of computed tomography in lithium-ion battery detection[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 133-139. DOI: 10.3969/j.issn.1674-8425(z).2020.02.019.
|
29 |
LIU Y J, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation[J]. Energy Storage Materials, 2021, 40: 268-281. DOI: 10.1016/j.ensm.2021.05.022.
|
30 |
LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. DOI: 10.1016/j.jpowsour.2013.12.099.
|
31 |
李胡. 镍钴锰三元锂离子电池老化机理的研究[D]. 厦门: 厦门大学, 2019. DOI: 10.27424/d.cnki.gxmdu.2019.001079.
|
|
LI H. Study on aging mechanism of Ni-Co-Mn ternary lithium ion battery[D]. Xiamen: Xiamen University, 2019. DOI: 10.27424/d.cnki.gxmdu.2019.001079.
|
32 |
FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 432-439. DOI: 10.1016/j.jpowsour.2014.08.135.
|