Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 240-254.doi: 10.19799/j.cnki.2095-4239.2024.0710
• Energy Storage System and Engineering • Previous Articles Next Articles
Sumin GUAN1,4(), Shengyuan ZHONG2, Hanchen LI3, Ruochen DING2, Wen SU3(
), Xinxing LIN2, Zhengyang TANG1,4, Juan DU1
Received:
2024-07-31
Revised:
2024-08-14
Online:
2025-01-28
Published:
2025-02-25
Contact:
Wen SU
E-mail:guan_sumin@ctg.com.cn;suwenzn@csu.edu.cn
CLC Number:
Sumin GUAN, Shengyuan ZHONG, Hanchen LI, Ruochen DING, Wen SU, Xinxing LIN, Zhengyang TANG, Juan DU. Research status and development trend of compressed CO2 energy storage technology[J]. Energy Storage Science and Technology, 2025, 14(1): 240-254.
Table 1
Classification and structure examples of the compressed CO2 energy storage system"
类型 | 系统示例 | 优缺点 |
---|---|---|
低压罐超临界/高压罐超临界S-CO2/ S-CO2 | ![]() | 优点: √变容积等压储罐下储能密度大[ 缺点: √高低压储罐压力较高,且系统压比较低; √等容储罐下CO2密度随压力变化较低,储罐体积大,储能密度小且有滑压损失 |
低压罐液态/高压罐超临界 L-CO2/ S-CO2 | ![]() | 优点: √CO2液态储罐压力及温度均在临界点以下; √等容液态储罐下CO2呈气液两相,储能密度大[ 缺点: √等容高压罐下,CO2充放前后密度差较小,储罐体积大且有滑压损失 |
低压罐气态/高压罐超临界 V-CO2/ S-CO2 | ![]() | 优点: √低压气态储罐压力低于临界压力,系统压力较大,CO2做功能力强[ √变容积等压储罐下储能密度大。 缺点: √等容储罐下储能密度小且有滑压损失 |
低压罐液态/高压罐液态 L-CO2/ L-CO2 | ![]() | 优点: √等容液态储罐下CO2呈气液两相,可极大提高储能密度[ 缺点: √高低压侧液态储罐压力与温度相关,为保证系统压比,低压罐温度低,可能导致结干冰 |
低压罐气态/高压罐液态 V-CO2/ L-CO2 | ![]() | 优点: √系统压比高,且运行在临界压力以下; √等容高压液态储罐下CO2呈气液两相,储能密度高。 缺点: √低压气态下CO2密度低,所需储气罐体积大[ |
Table 2
CO2 storage methods and characteristics"
存储CO2方式 | 装置示例 | 优缺点 |
---|---|---|
地下咸水层 | ![]() | 优点: √压力相对稳定,运行成本低。 缺点: √依赖特殊地理条件,漏气不易监测,岩石层地质环境复杂,运行安全稳定性难以保障[ √CO2可溶于水,有效储气占比低[ |
地下盐穴 | ![]() | 优点: √投资成本及运行成本低。 缺点: √体积固定,存在压力及温度波动,不利于旋转机械的稳定运行[ √为防止盐穴垮塌,存储压力较高 |
柔性储气棚 | ![]() | 优点: √压力相对稳定,可变容积,常压柔性材料成本低[ 缺点: √储能密度小,占用空间大,受限于材料一般用于低压端储气[ |
吸附储气床 | ![]() | 优点: √压力相对稳定,体积小,储能密度高[ 缺点: √吸附和解析的速度难以满足储释能发电需求; √一般用于低压端储气,装置及流程复杂,性能影响因素多[ |
储气罐 | ![]() | 优点: √存储压力高,布置灵活。 缺点: √储能密度小,体积大,成本高; √储气压力及温度在较大范围内往复变化,存在疲劳失效的风险 |
储液罐 | ![]() | 优点: √存储压力高,布置灵活; √气液两相存储,储能密度大,压力和温度往复变化的幅度较小[ 缺点: √为防止干冰的出现,实际工程压力应在1 MPa以上,导致低压侧压力较大 |
1 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
2 | 聂子攀, 肖立业, 邱清泉, 等. 地下抽水蓄能发展综述[J]. 储能科学与技术, 2024, 13(5): 1606-1619. DOI: 10.19799/j.cnki.2095-4239.2023.0934. |
NIE Z P, XIAO L Y, QIU Q Q, et al. Overview of the development of underground pumped hydro storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1606-1619. DOI: 10.19799/j.cnki.2095-4239.2023.0934. | |
3 | 郭丁彰,尹钊,周学志,等. 压缩空气储能系统储气装置研究现状与发展趋势 [J]. 储能科学与技术, 2021, 10 (05): 1486-1493. |
GUO D Z, YI D, ZHOU X Z, et al. Research status and development trend of gas storage device of compressed air energy storage system [J]. Energy storage science and technology, 2021, 10 (05): 1486-1493. | |
4 | 孙健, 陶建龙, 胡芸蓉, 等. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976. DOI: 10.19799/j.cnki.2095-4239.2023.0938. |
SUN J, TAO J L, HU Y R, et al. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. DOI: 10.19799/j.cnki.2095-4239.2023.0938. | |
5 | 刘文军, 贾东强, 曾昊旻, 等. 飞轮储能系统的发展与工程应用现状[J]. 微特电机, 2021, 49(12): 52-58. DOI: 10.3969/j.issn.1004-7018.2021.12.011. |
LIU W J, JIA D Q, ZENG H M, et al. Development and engineering application status of flywheel energy storage system[J]. Small & Special Electrical Machines, 2021, 49(12): 52-58. DOI: 10.3969/j.issn.1004-7018.2021.12.011. | |
6 | 孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42. DOI: 10.19799/j.cnki.2095-4239.2019.0196. |
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42. DOI: 10.19799/j.cnki.2095-4239.2019.0196. | |
7 | 韩丛宇, 石勇. 基于电磁储能的电网新能源消纳能力仿真分析[J]. 计算机仿真, 2021, 38(1): 51-55. DOI: 10.3969/j.issn.1006-9348.2021.01.012. |
HAN C Y, SHI Y. Simulation analysis of new energy consumption capacity of power grid based on electromagnetic energy storage[J]. Computer Simulation, 2021, 38(1): 51-55. DOI: 10.3969/j.issn.1006-9348.2021.01.012. | |
8 | LIANG Y R, LI P, XING L L, et al. Current status of thermodynamic electricity storage: Principle, structure, storage device and demonstration[J]. Journal of Energy Storage, 2024, 80: 110347. DOI: 10.1016/j.est.2023.110347. |
9 | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. | |
10 | LI F H, XING L L, SU W, et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage[J]. Journal of Energy Storage, 2024, 75: 109581. |
11 | 李阳海, 梅欣, 徐万兵, 等. 采用不同工质的压缩气体储能系统热力性能对比分析[J]. 动力工程学报, 2023, 43(2): 269-274. DOI: 10.19805/j.cnki.jcspe.2023.02.019. |
LI Y H, MEI X, XU W B, et al. Comparative analysis of thermal performance of compressed gas energy storage systems using different working fluids[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 269-274. DOI: 10.19805/j.cnki.jcspe. 2023.02.019. | |
12 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
13 | 郑平洋,郝佳豪,常鸿, 等. 基于不同液化方式的液态二氧化碳储能系统研究进展[J]. 南方能源建设, 2024, 11(2): 102-111. |
ZHENG P Y, HAO J H, CHANG H, et al. Research progress of liquid carbon dioxide energy storage system based on different liquefaction methods[J]. Southern energy construction, 2024, 11(2): 102-111. | |
14 | ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503. DOI: 10.1002/er.3732. |
15 | TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: 118957. DOI: 10.1016/j.applthermaleng. 2022.118957. |
16 | 郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000057. |
HAO Y P. Study on thermodynamic characteristics and technical economy of transcritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000057. | |
17 | LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: 115067. DOI: 10.1016/j.apenergy.2020.115067. |
18 | ZHAO R J, LIU Z. Thermo-economic performance of a compressed CO2 energy storage system with a flexible gas holder[J]. Journal of Energy Storage, 2023, 60: 106675. DOI: 10.1016/j.est.2023.106675. |
19 | ZHANG T H, ZHANG S Q, GAO J M, et al. Feasibility assessment of a novel compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption: Thermodynamic and economic analysis[J]. Applied Energy, 2023, 348: 121562. DOI: 10.1016/j.apenergy. 2023.121562. |
20 | ZHANG T H, QIN S S, WEI G H, et al. Thermodynamic analysis of a novel trans-critical compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption[J]. Energy, 2023, 282: 128399. DOI: 10.1016/j.energy. 2023.128399. |
21 | ZHANG T H, GAO J M, ZHANG Y, et al. Thermodynamic analysis of a novel adsorption-type trans-critical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2022, 270: 116268. DOI: 10.1016/j.enconman. 2022.116268. |
22 | DENG Y Y, WANG J F, CAO Y, et al. Technical and economic evaluation of a novel liquid CO2 energy storage-based combined cooling, heating, and power system characterized by direct refrigeration with phase change[J]. Applied Thermal Engineering, 2023, 230: 120833. DOI: 10.1016/j.applthermaleng.2023.120833. |
23 | YAN X W, DING J L, ZHANG Y L, et al. Thermodynamic evaluation on a new CO2 energy storage system assisted by adsorption bed[J]. Journal of Energy Storage, 2023, 61: 106775. DOI: 10.1016/j.est.2023.106775. |
24 | LIU Z, YAN X W, WANG S, et al. Performance of compressed CO2 energy storage systems with different liquefaction and storage scenarios[J]. Fuel, 2024, 359: 130527. DOI: 10.1016/j.fuel.2023.130527. |
25 | 中国东方电气集团有限公司. 全球首个二氧化碳+飞轮储能示范项目在东方电气竣工 [EB/OL] [2022-09-05]. http://www.sasac.gov.cn/n2588025/n2588124/c25926182/content.html. |
China Dongfang Electric Group Co., Ltd. The world's first CO2 + flywheel energy storage demonstration project has been completed at Dongfang Electric. [EB/OL] [2022-09-05]. http://www.sasac.gov.cn/n2588025/n2588124/c25926182/ content.html. | |
26 | 叶宇虹. 芜湖海螺建成全球首套二氧化碳储能商业示范系统 [EB/OL].[2024-01-19]. http://www.fcxnews.cn/fcyw/202401 /t20240118_7327036.html. |
YE H Y. Wuhu Conch has completed the world's first commercial demonstration system for carbon dioxide energy storage. [EB/OL].[2024-01-19]. http://www.fcxnews.cn/fcyw/202401/t20240118_7327036.html. | |
27 | 吕雅宁.博睿鼎能完成数千万元天使轮融资,聚焦液态二氧化碳储能技术 [EB/OL].[2023-10-25]. https://baijiahao.baidu.com/s?id=1780720794800066549&wfr=spider&for=pc |
LV Y N. Borui Dingneng has completed tens of millions of yuan in angel round financing, focusing on liquid carbon dioxide energy storage technology. [EB/OL].[2023-10-25]. https://baijiahao.baidu.com/s?id=1780720794800066549&wfr=spider&for=pc | |
28 | ENERGYDOME. CO2-battery, [EB/OL]. [2023-10-25]. https://energydome.com. |
29 | 喻浩. 深部含水层压缩二氧化碳储能系统的数值模拟研究[D]. 长沙: 长沙理工大学, 2019. DOI: 10.26985/d.cnki.gcsjc.2019.001079. |
YU H. Numerical simulation of compressed carbon dioxide energy storage system in deep aquifer[D]. Changsha: Changsha University of Science & Technology, 2019. DOI: 10.26985/d.cnki.gcsjc.2019.001079. | |
30 | LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. DOI: 10.1016/j.enconman.2016.08.096. |
31 | ZHANG Y, LI W J, CHEN G D. A thermodynamic model for carbon dioxide storage in underground salt Caverns[J]. Energies, 2022, 15(12): 4299. DOI: 10.3390/en15124299. |
32 | LIU W, DUAN X Y, LI Q H, et al. Analysis of pressure interval/injection and production frequency on stability of large-scale supercritical CO2 storage in salt Caverns[J]. Journal of Cleaner Production, 2023, 433: 139731. DOI: 10.1016/j.jclepro.2023.139731. |
33 | PENG Y R, GAO J M, ZHANG Y, et al. Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system[J]. Journal of Energy Storage, 2023, 58: 106286. DOI: 10.1016/j.est.2022.106286. |
34 | LUO X, WANG J H, KRUPKE C, et al. Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage[J]. Applied Energy, 2016, 162: 589-600. DOI: 10.1016/j.apenergy.2015.10.091. |
35 | HARTMANN N, VÖHRINGER O, KRUCK C, et al. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations[J]. Applied Energy, 2012, 93: 541-548. DOI: 10.1016/j.apenergy.2011.12.007. |
36 | PHUOC T X, MASSOUDI M. Pumping gaseous CO2 into a high-pressure, constant-volume storage cylinder: A thermodynamics analysis[J]. Journal of Energy Storage, 2021, 40: 102706. DOI: 10.1016/j.est.2021.102706. |
37 | ZHANG Y, LIN Y H, LIN F Z, et al. Thermodynamic analysis of a novel combined cooling, heating, and power system consisting of wind energy and transcritical compressed CO2 energy storage[J]. Energy Conversion and Management, 2022, 260: 115609. DOI: 10.1016/j.enconman.2022.115609. |
38 | ZHANG Y, LIN F Z, LIU Z Y, et al. Energy and exergy performance evaluation of a novel low-temperature physical energy storage system consisting of compressed CO2 energy storage and Kalina cycle[J]. Journal of Energy Storage, 2023, 60: 106605. DOI: 10.1016/j.est.2023.106605. |
39 | FU H L, SHI J, YUAN J Q, et al. Thermodynamic analysis of photothermal-assisted liquid compressed CO2 energy storage system hybrid with closed-cycle drying[J]. Journal of Energy Storage, 2023, 66: 107415. DOI: 10.1016/j.est.2023.107415. |
40 | FU X T, YAN X W, LIU Z. Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives[J]. Energy, 2023, 284: 128642. DOI: 10.1016/j.energy. 2023.128642. |
41 | TANG B, SUN L, XIE Y H. Design and performance evaluation of an energy storage system using CO2-based binary mixtures for thermal power plant under dry conditions[J]. Energy Conversion and Management, 2022, 268: 116043. DOI: 10.1016/j.enconman. 2022.116043. |
[1] | Xu LIU, Xuqing YANG, Zhan LIU. A novel liquid energy storage system based on a carbon dioxide mixture [J]. Energy Storage Science and Technology, 2021, 10(5): 1806-1814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||