Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 671-687.doi: 10.19799/j.cnki.2095-4239.2024.0828
• Energy Storage System and Engineering • Previous Articles Next Articles
Received:
2024-09-05
Revised:
2024-10-25
Online:
2025-02-28
Published:
2025-03-18
CLC Number:
Shuzhen WANG. i-C&CG solving algorithm-driven collaborative planning of data center and battery energy storage[J]. Energy Storage Science and Technology, 2025, 14(2): 671-687.
1 | 吕佳炜, 张沈习, 程浩忠, 等. 集成数据中心的综合能源系统能量流–数据流协同规划综述及展望[J]. 中国电机工程学报, 2021, 41(16): 5500-5521. DOI: 10.13334/j.0258-8013.pcsee.210326. |
LYU J W, ZHANG S X, CHENG H Z, et al. Review and prospect on coordinated planning of energy flow and workload flow in the integrated energy system containing data centers[J]. Proceedings of the CSEE, 2021, 41(16): 5500-5521. DOI: 10.13334/j.0258-8013.pcsee.210326. | |
2 | 陈英达, 李一兵, 赖蔚蔚, 等. 支撑电网业务的云大物移智技术支撑融合体系[J]. 电力信息与通信技术, 2020, 18(2): 14-20. DOI: 10.16543/j.2095-641x.electric.power.ict.2020.02.003. |
CHEN Y D, LI Y B, LAI W W, et al. Technical supporting fusion system of cloud computing, big data, Internet of Things, mobile Internet and artificial intelligence for supporting power grid businesses[J]. Electric Power Information and Communication Technology, 2020, 18(2): 14-20. DOI: 10.16543/j.2095-641x.electric.power.ict.2020.02.003. | |
3 | 杨沐岩. 电算协同发展 机遇挑战并存[N]. 中国能源报, 2024-9-2(003). |
4 | 曹雨洁, 丁肇豪, 王鹏, 等. 能源互联网背景下数据中心与电力系统协同优化(二): 机遇与挑战[J]. 中国电机工程学报, 2022, 42(10): 3512-3527. DOI: 10.13334/j.0258-8013.pcsee.210814. |
CAO Y J, DING Z H, WANG P, et al. Coordinated operation for data center and power system in the context of Energy Internet (II): Opportunities and challenges[J]. Proceedings of the CSEE, 2022, 42(10): 3512-3527. DOI: 10.13334/j.0258-8013.pcsee.210814. | |
5 | 杨挺, 姜含, 侯昱丞, 等. 基于计算负荷时-空双维迁移的互联多数据中心碳中和调控方法研究[J]. 中国电机工程学报, 2022, 42(1): 164-176. DOI: 10.13334/j.0258-8013.pcsee.210485. |
YANG T, JIANG H, HOU Y C, et al. Study on carbon neutrality regulation method of interconnected multi-datacenter based on spatio-temporal dual-dimensional computing load migration[J]. Proceedings of the CSEE, 2022, 42(1): 164-176. DOI: 10.13334/j.0258-8013.pcsee.210485. | |
6 | 王勇, 刘梦晨, 王辉, 等. 计及源网荷储协同运行的城市配网侧储能系统规划调度[J]. 电工电能新技术, 2024, 43(3): 73-82. DOI: 10.12067/ATEEE2302004. |
WANG Y, LIU M C, WANG H, et al. Planning and scheduling of energy storage system for urban distribution network considering cooperative operation of generation, grid, load, and storage[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(3): 73-82. DOI: 10.12067/ATEEE2302004. | |
7 | GAO H J, LYU X D, HE S J, et al. Integrated planning of cyber-physical active distribution system considering multidimensional uncertainties[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 3145-3159. DOI: 10.1109/TSG.2022.3166194. |
8 | ZHAO X, BAI Z Q, XUE W L, et al. Research on bi-level cooperative robust planning of distributed renewable energy in distribution networks considering demand response and uncertainty[J]. Energy Reports, 2021, 7: 1025-1037. DOI: 10.1016/j.egyr.2021.09.170. |
9 | 张伟, 罗世刚, 滕婕, 等. 考虑温控负荷聚合调控的新能源-储能联合规划[J]. 储能科学与技术, 2023, 12(6): 1901-1912. DOI: 10.19799/j.cnki.2095-4239.2023.0054. |
ZHANG W, LUO S G, TENG J, et al. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation[J]. Energy Storage Science and Technology, 2023, 12(6): 1901-1912. DOI: 10.19799/j.cnki.2095-4239.2023.0054. | |
10 | 马浩天, 胡俊杰, 童宇轩. 考虑灵活性的数据中心微网两阶段鲁棒规划方法[J]. 中国电机工程学报, 2023, 43(19): 7396-7409. DOI: 10.13334/j.0258-8013.pcsee.221146. |
MA H T, HU J J, TONG Y X, et al. A two-stage robust planning approach for data center microgrids considering flexibility[J]. Proceedings of the CSEE, 2023, 43(19): 7396-7409. DOI: 10.13334/j.0258-8013.pcsee.221146. | |
11 | RANCILIO G, LUCAS A, KOTSAKIS E, et al. Modeling a large-scale battery energy storage system for power grid application analysis[J]. Energies, 2019, 12(17): 3312. DOI: 10.3390/en12173312. |
12 | XIE Y L, CUI Y, WU D J, et al. Economic analysis of hydrogen-powered data center[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27841-27850. DOI: 10.1016/j.ijhydene.2021.06.048. |
13 | ZHOU K L, FEI Z N, LU X H. Optimal energy management of Internet data center with distributed energy resources[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 2285-2295. DOI: 10.1109/TCC.2022.3196655. |
14 | 孙强, 孙志凰, 潘杭萍, 等. 考虑多种储能的数据中心综合能源系统配置优化[J]. 中国电力, 2022, 55(9): 1-7. DOI: 10.11930/j.issn.1004-9649.202206048. |
SUN Q, SUN Z H, PAN H P, et al. Configuration optimization of integrated energy system for data center considering multiple energy storage facilities[J]. Electric Power, 2022, 55(9): 1-7. DOI: 10.11930/j.issn.1004-9649.202206048. | |
15 | 吴云芸, 方家琨, 艾小猛, 等. 计及需求响应的数据中心联盟共享储能规划[J]. 电力系统自动化, 2023, 47(7): 42-50. DOI: 10.7500/AEPS20220725003. |
WU Y Y, FANG J K, AI X M, et al. Shared energy storage planning for data center alliance considering demand response[J]. Automation of Electric Power Systems, 2023, 47(7): 42-50. DOI: 10.7500/AEPS20220725003. | |
16 | WANG Z Y, WANG Y, JI H R, et al. Distributionally robust planning for data center park considering operational economy and reliability[J]. Energy, 2024, 290: 130185. DOI: 10.1016/j.energy.2023.130185. |
17 | QI W B, LI J, LIU Y Q, et al. Planning of distributed Internet data center microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 762-771. DOI: 10.1109/TSG.2017.2751756. |
18 | ALI LASEMI M, ALIZADEH S, ASSILI M, et al. Energy cost optimization of globally distributed Internet Data Centers by copula-based multidimensional correlation modeling[J]. Energy Reports, 2023, 9: 631-644. DOI: 10.1016/j.egyr.2022.12.033. |
19 | 张玉莹, 曾博, 周吟雨, 等. 碳减排驱动下的数据中心与配电网交互式集成规划研究[J]. 电工技术学报, 2023, 38(23): 6433-6450. DOI: 10.19595/j.cnki.1000-6753.tces.221646. |
ZHANG Y Y, ZENG B, ZHOU Y Y, et al. Research on interactive integration planning of data centers and distribution network driven by carbon emission reduction[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6433-6450. DOI: 10.19595/j.cnki.1000-6753.tces.221646. | |
20 | 鲁明芳, 李咸善, 李飞, 等. 季节性氢储能-混氢燃气轮机系统两阶段随机规划[J]. 中国电机工程学报, 2023, 43(18): 6978-6991. DOI: 10.13334/j.0258-8013.pcsee.221425. |
LU M F, LI X S, LI F, et al. Two-stage stochastic programming of seasonal hydrogen energy storage and mixed hydrogen-fueled gas turbine system[J]. Proceedings of the CSEE, 2023, 43(18): 6978-6991. DOI: 10.13334/j.0258-8013.pcsee.221425. | |
21 | 倪鸾, 王育飞, 薛花, 等. 计及多时间尺度不确定性的电-氢一体化储能站随机-鲁棒混合规划[J]. 储能科学与技术, 2023, 12(3): 846-856. DOI: 10.19799/j.cnki.2095-4239.2022.0726. |
NI L, WANG Y F, XUE H, et al. Hybrid stochastic-robust planning of an electricity-hydrogen integrated energy storage station considering multi-timescale uncertainty[J]. Energy Storage Science and Technology, 2023, 12(3): 846-856. DOI: 10.19799/j.cnki.2095-4239.2022.0726. | |
22 | 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022. DOI: 10.13334/j.0258-8013.pcsee.170500. |
LIU Y X, GUO L, WANG C S. Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022. DOI: 10.13334/j.0258-8013.pcsee.170500. | |
23 | 熊阳阳, 于艾清, 王育飞, 等. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. |
XIONG Y Y, YU A Q, WANG Y F, et al. Optimization of integrated energy system operation containing hydrogen compressed natural gas based on multiple scenarios and uncertainties[J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. | |
24 | 张刘冬, 袁宇波, 孙大雁, 等. 基于两阶段鲁棒区间优化的风储联合运行调度模型[J]. 电力自动化设备, 2018, 38(12): 59-66, 93. DOI: 10.16081/j.issn.1006-6047.2018.12.009. |
ZHANG L D, YUAN Y B, SUN D Y, et al. Joint operation model of wind-storage system based on two-stage robust interval optimization[J]. Electric Power Automation Equipment, 2018, 38(12): 59-66, 93. DOI: 10.16081/j.issn.1006-6047.2018.12.009. | |
25 | AN Y, ZENG B, ZHANG Y, et al. Reliable p-median facility location problem: Two-stage robust models and algorithms[J]. Transportation Research Part B: Methodological, 2014, 64: 54-72. DOI: 10.1016/j.trb.2014.02.005. |
26 | DU B, ZHOU H, LEUS R. A two-stage robust model for a reliable p-center facility location problem[J]. Applied Mathematical Modelling, 2020, 77: 99-114. DOI: 10.1016/j.apm.2019.07.025. |
27 | ZHANG X, LIU X. A two-stage robust model for express service network design with surging demand[J]. European Journal of Operational Research, 2022, 299(1): 154-167. DOI: 10.1016/j.ejor.2021.06.031. |
28 | ZUGNO M, CONEJO A J. A robust optimization approach to energy and reserve dispatch in electricity markets[J]. European Journal of Operational Research, 2015, 247(2): 659-671. DOI: 10.1016/j.ejor.2015.05.081. |
29 | TSANG M Y, SHEHADEH K S, CURTIS F E. An inexact column-and-constraint generation method to solve two-stage robust optimization problems[J]. Operations Research Letters, 2023, 51(1): 92-98. DOI: 10.1016/j.orl.2022.12.002. |
30 | TSANG M Y, SHEHADEH K S, CURTIS F E, et al. Stochastic optimization approaches for an operating room and anesthesiologist scheduling problem[J]. Operations Research, 2024: opre. 2022. 0258. DOI: 10.1287/opre.2022.0258. |
31 | 滕孟杰, 陈晨, 赵宇鸿, 等. 不确定风电接入下计及煤电机组深调和储能的电力系统分布鲁棒优化日前调度方法[J]. 电网技术, 2024, 48(8): 3122-3132. DOI: 10.13335/j.1000-3673.pst.2023.1619. |
TENG M J, CHEN C, ZHAO Y H, et al. Distribution robust optimal day-ahead dispatch method for power systems with uncertain wind power access considering deep peak regulation of coal-fired units and energy storage[J]. Power System Technology, 2024, 48(8): 3122-3132. DOI: 10.13335/j.1000-3673.pst.2023.1619. | |
32 | 魏韡, 刘锋, 梅生伟. 电力系统鲁棒经济调度(二): 应用实例[J]. 电力系统自动化, 2013, 37(18): 60-67. |
WEI W, LIU F, MEI S W. Robust and economical scheduling methodology for power systems part two application examples[J]. Automation of Electric Power Systems, 2013, 37(18): 60-67. | |
33 | GUO C S, LUO F J, CAI Z X, et al. Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities[J]. Applied Energy, 2021, 301: 117474. DOI: 10.1016/j.apenergy.2021.117474. |
34 | 程苒, 段瑶, 吴亚雄, 等. 考虑等效循环放电深度约束的配电网储能规划[J]. 南方电网技术, 2024, 18(10): 54-63. DOI: 10.13648/j.cnki.issn1674-0629.2024.10.006. |
CHENG R, DUAN Y, WU Y X, et al. Energy storage planning of distribution network considering equivalent cyclic discharge depth constraints[J]. Southern Power System Technology, 2024, 18(10): 54-63. DOI: 10.13648/j.cnki.issn1674-0629.2024.10.006. | |
35 | 王荔妍, 陈启鑫, 何冠楠, 等. 考虑电池储能寿命模型的发电计划优化[J]. 电力系统自动化, 2019, 43(8): 93-100. DOI: 10.7500/AEPS20180329002. |
WANG L Y, CHEN Q X, HE G N, et al. Optimization of generation scheduling considering battery energy storage life model[J]. Automation of Electric Power Systems, 2019, 43(8): 93-100. DOI: 10.7500/AEPS20180329002. | |
36 | 葛玉友, 尚策. 寿命约束的储能规划[J]. 中国电机工程学报, 2020, 40(19): 6150-6160. DOI: 10.13334/j.0258-8013.pcsee.191319. |
GE Y Y, SHANG C. Energy storage planning constrained by its life[J]. Proceedings of the CSEE, 2020, 40(19): 6150-6160. DOI: 10.13334/j.0258-8013.pcsee.191319. | |
37 | 刘仕奇. 考虑交流潮流约束的机组组合问题研究[D]. 长春: 长春工业大学, 2023. |
LIU S Q. Research on unit commitment considering AC power flow constraint[D]. Changchun: Changchun University of Technology, 2023. |
[1] | Yuan LI, Shu ZHENG, Yonghua CHEN, Jun WANG, Zihui WANG. Optimization configuration of distribution network energy storage considering system reliability constraints [J]. Energy Storage Science and Technology, 2025, 14(1): 193-202. |
[2] | Xinlei CAI, Jinzhou ZHU, Mai LIU, Jiale LIU, Zijie MENG, Yang YU. Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1913-1919. |
[3] | Jian HU, Yujie REN, Jinkui DU, Yuan LIU, Dan LIU. Optimal scheduling of an integrated wind/solar/gas cogeneration energy system with phase change energy storage [J]. Energy Storage Science and Technology, 2023, 12(3): 968-975. |
[4] | Zhicheng LIU, Daogang PENG, Huirong ZHAO, Danhao WANG, Yuchen LIU. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal [J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||