Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2590-2601.doi: 10.19799/j.cnki.2095-4239.2025.0042
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Yali WANG1(), Xiaoyan LI1, Hangyu SUN1, Yunfeng FU1, Zhaobo LIU1, Guoshan DU1(
), Jun LIU1, Songxuan CHEN1, Mengmeng HU2
Received:
2025-01-09
Revised:
2025-02-07
Online:
2025-07-28
Published:
2025-07-11
Contact:
Guoshan DU
E-mail:wangyali@enfi.com.cn;dugs@enfi.com.cn
CLC Number:
Yali WANG, Xiaoyan LI, Hangyu SUN, Yunfeng FU, Zhaobo LIU, Guoshan DU, Jun LIU, Songxuan CHEN, Mengmeng HU. Research progress of supports for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2025, 14(7): 2590-2601.
Fig. 3
(a) YSZ electrolyte support[22]; (b) Micro-morphology of YSZ-supported single cell; (c) Macro-morphology of YSZ-supported single stack; (d) Output power of YSZ-supported single stack; (e) Cathode of ScSZ-supported single cell[27]; (f) Anode of ScSZ-supported single cell; (g) Micro-morphology of ScSZ-supported single cell; (h) Output power of ScSZ-supported single cell"
Fig. 4
(a) Electrochemical impedance of nickel-free La0.75Sr0.25Cr0.5Mn0.5O3 anode support material[38]; (b) Micro-morphology and electrochemical properties of SFCM/GDC anode support[39]; (c) Schematic diagram of carbon-fuel reaction mechanism on anode surface[40-41]; (d) Schematic diagram of CMF anode support structure[44]; (e) Schematic diagram of ABO3 catalyst inhibition of anode carbon deposition[45]"
[1] | SHAO Z P, NI M. Fuel cells: Materials needs and advances[J]. MRS Bulletin, 2024, 49(5): 451-463. DOI: 10.1557/s43577-024-00722-9. |
[2] | PHAM T T, MOLLAAMIN F, MONAJJEMI M, et al. A review of 2019 fuel cell technologies: Modelling and controlling[J]. International Journal of Nanotechnology, 2020, 17(7/8/9/10): 498. DOI: 10.1504/ijnt.2020.111320. |
[3] | YI B Y, HUO C X, XUE D X, et al. A numerical study of the performance of solid oxide fuel cell with bi-layer interconnector[J]. International Journal of Hydrogen Energy, 2024, 87: 1233-1244. DOI: 10.1016/j.ijhydene.2024.09.118. |
[4] | SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27643-27674. DOI: 10.1016/j.ijhydene.2021.06.020. |
[5] | VINCHHI P, KHANDLA M, CHAUDHARY K, et al. Recent advances on electrolyte materials for SOFC: A review[J]. Inorganic Chemistry Communications, 2023, 152: 110724. DOI: 10.1016/j.inoche.2023.110724. |
[6] | AHMED N, DEVI S, DAR M A, et al. Anode material for solid oxide fuel cell: A review[J]. Indian Journal of Physics, 2024, 98(3): 877-888. DOI: 10.1007/s12648-023-02860-3. |
[7] | HUSSAIN S, LI Y P. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte[J]. Energy Transitions, 2020, 4(2): 113-126. DOI: 10.1007/s41825-020-00029-8. |
[8] | 韩婷婷, 吴玉玺, 解子恒, 等. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki.2095-4239.2021.0148. |
HAN T T, WU Y X, XIE Z H, et al. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki. 2095-4239.2021.0148. | |
[9] | 孙春文, 孙杰, 杨伟, 等. 碳基燃料SOFC阳极材料研究进展[J]. 中国工程科学, 2013, 15(2): 77-87. |
SUN C W, SUN J, YANG W, et al. Recent anode advances in solid oxide fuel cells with carbon-based fuels[J]. Engineering Sciences, 2013, 15(2): 77-87. | |
[10] | ZHANG W, WEI J L, YIN F S, et al. Recent advances in carbon-resistant anodes for solid oxide fuel cells[J]. Materials Chemistry Frontiers, 2023, 7(10): 1943-1991. DOI: 10.1039/D2QM01366E. |
[11] | ZHAO H, LI Q, SUN L P. Ln2MO4 cathode materials for solid oxide fuel cells[J]. Science China Chemistry, 2011, 54(6): 898-910. DOI: 10.1007/s11426-011-4290-2. |
[12] | HUANG Y L, HUSSAIN A M, WACHSMAN E D. Nanoscale cathode modification for high performance and stable low-temperature solid oxide fuel cells (SOFCs)[J]. Nano Energy, 2018, 49: 186-192. DOI: 10.1016/j.nanoen.2018.04.028. |
[13] | ZHOU J, ZHANG L, LIU C, et al. Aqueous tape casting technique for the fabrication of Sc0.1Ce0·01Zr0·89 O 2 + Δ ceramic for electrolyte-supported solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(38): 21110-21114. DOI: 10.1016/j.ijhydene.2019.01.265. |
[14] | CHANG H, YAN J, CHEN H L, et al. Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs[J]. Ceramics International, 2019, 45(8): 9866-9870. DOI: 10.1016/j.ceramint.2019.02.026. |
[15] | HSIEH W S, LIN P, WANG S F. Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2859-2867. DOI: 10.1016/j.ijhydene.2012.12.056. |
[16] | DU P X, WU J, LI Z B, et al. Failure mechanism and optimization of metal-supported solid oxide fuel cells[J]. Materials, 2023, 16(11): 3978. DOI: 10.3390/ma16113978. |
[17] | FU S J, ZHANG J Q, XU K, et al. Fabrication, property and performance evaluation of Stainless Steel 430L as porous supports for metal supported solid oxide fuel cells[J]. Frontiers in Energy Research, 2023, 11: 1127900. DOI: 10.3389/fenrg. 2023. 1127900. |
[18] | ZHANG S L, LI C X, LI C J, et al. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells[J]. Journal of Power Sources, 2016, 323: 1-7. DOI: 10.1016/j.jpowsour.2016.05.020. |
[19] | WILLIAMS M C, VORA S D, JESIONOWSKI G. Worldwide status of solid oxide fuel cell technology[J]. ECS Transactions, 2020, 96(1): 1-10. DOI: 10.1149/09601.0001ecst. |
[20] | 刘少名, 邓占锋, 徐桂芝, 等. 欧洲固体氧化物燃料电池(SOFC)产业化现状[J]. 工程科学学报, 2020, 42(3): 278-288. DOI: 10.13374/j.issn2095-9389.2019.10.10.001. |
LIU S M, DENG Z F, XU G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering, 2020, 42(3): 278-288. DOI: 10. 13374/j.issn2095-9389.2019.10.10.001. | |
[21] | JOO J H, CHOI G M. Micro-solid oxide fuel cell using thick-film ceria[J]. Solid State Ionics, 2009, 180(11/12/13): 839-842. DOI: 10.1016/j.ssi.2009.02.006. |
[22] | 苑莉莉. 电解质自支撑的直接碳固体氧化物燃料电池的研制[D]. 广州: 华南理工大学, 2016.YUAN L L. An investigation on the electrolyte-supporting direct carbon solid oxide fuel cells[D]. Guangzhou: South China University of Technology, 2016. |
[23] | 高可炎, 赵苏旭, 臧予安琪, 等. "383Windows" 电解质自支撑新构型固体氧化物燃料电池的设计与制备[J]. 微纳电子技术, 2023, 60(5): 779-785. DOI: 10.13250/j.cnki.wndz.2023.05.016. |
GAO K Y, ZHAO S X, ZANG Y A Q, et al. Design and fabrication of electrolyte-supported solid oxide fuel cell with a novel "383Windows" configuration[J]. Micronanoelectronic Technology, 2023, 60(5): 779-785. DOI: 10.13250/j.cnki.wndz.2023.05.016. | |
[24] | CELIK S, TIMURKUTLUK B, TOROS S, et al. Mechanical and electrochemical behavior of novel electrolytes based on partially stabilized zirconia for solid oxide fuel cells[J]. Ceramics International, 2015, 41(7): 8785-8790. DOI: 10.1016/j.ceramint. 2015.03.104. |
[25] | ZHIGACHEV A O, RODAEV V V, ZHIGACHEVA D V, et al. Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: A review[J]. Ceramics International, 2021, 47(23): 32490-32504. DOI: 10.1016/j.ceramint. 2021.08.285. |
[26] | SOUZA J P, GROSSO R L, MUCCILLO R, et al. Phase composition and ionic conductivity of zirconia stabilized with scandia and europia[J]. Materials Letters, 2018, 229: 53-56. DOI: 10.1016/j.matlet.2018.06.091. |
[27] | 杨国泉. 基于ScSZ电解质的固体氧化物燃料电池的制备及其性能表征[D]. 北京: 北京理工大学, 2015.YANG G Q. Preparation and performance of SOFC based on ScSZ electrolyte[D]. Beijing: Beijing Institute of Technology, 2015. |
[28] | MATKIN D E, STAROSTINA I A, HANIF M B, et al. Revisiting the ionic conductivity of solid oxide electrolytes: A technical review[J]. Journal of Materials Chemistry A, 2024, 12(38): 25696-25714. DOI: 10.1039/D4TA03852E. |
[29] | CHEN G, ZHANG X B, LUO Y D, et al. Ionic conduction mechanism of a nanostructured BCY electrolyte for low-temperature SOFC[J]. International Journal of Hydrogen Energy, 2020, 45(45): 24108-24115. DOI: 10.1016/j.ijhydene.2019.07.223. |
[30] | CHRISTIANSEN N, PRIMDAHL S, WANDEL M, et al. Status of the solid oxide fuel cell development at topsoe fuel cell A/S and DTU energy conversion[J]. ECS Transactions, 2013, 57(1): 43-52. DOI: 10.1149/05701.0043ecst. |
[31] | HALINEN M, SAARINEN J, NOPONEN M, et al. Experimental analysis on performance and durability of SOFC demonstration unit[J]. Fuel Cells, 2010, 10(3): 440-452. DOI: 10.1002/fuce. 200900152. |
[32] | SHRI PRAKASH B, SENTHIL KUMAR S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 149-179. DOI: 10.1016/j.rser.2014.04.043. |
[33] | YU J H, PARK G W, LEE S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode[J]. Journal of Power Sources, 2007, 163(2): 926-932. DOI: 10.1016/j.jpowsour.2006.10.017. |
[34] | 刘欣. 固体氧化物燃料电池中Ni-YSZ阳极的稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu. 2020. 002573. |
LIU X. The stability of Ni-YSZ anode in solid oxide fuel cells[D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002573. | |
[35] | WALDBILLIG D, WOOD A, IVEY D G. Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes[J]. Journal of Power Sources, 2005, 145(2): 206-215. DOI: 10.1016/j.jpowsour.2004.12.071. |
[36] | KONG J R, SUN K N, ZHOU D R, et al. Ni-YSZ gradient anodes for anode-supported SOFCs[J]. Journal of Power Sources, 2007, 166(2): 337-342. DOI: 10.1016/j.jpowsour.2006.12.042. |
[37] | 吴琪雯, 朱子翼, 叶梓滨, 等. 流延相转换法制备阳极支撑SOFC及其性能研究[J]. 电源技术, 2023, 47(12): 1616-1620. |
WU Q W, ZHU Z Y, YE Z B, et al. Electrochemical performance of anode-supported SOFC fabricated by tape casted phase inversion method[J]. Chinese Journal of Power Sources, 2023, 47(12): 1616-1620. | |
[38] | TAO S W, IRVINE J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323. DOI: 10.1038/nmat871. |
[39] | HUSSAIN A M, HUANG Y L, PAN K J, et al. A redox-robust ceramic anode-supported low-temperature solid oxide fuel cell[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18526-18532. DOI: 10.1021/acsami.0c01611. |
[40] | ABU TAHARI M N, SALLEH F, TENGKU SAHARUDDIN T S, et al. Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature[J]. International Journal of Hydrogen Energy, 2019, 44(37): 20751-20759. DOI: 10.1016/j.ijhydene.2018.09.186. |
[41] | KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157-166. DOI: 10.1016/S0167-2738(02)00243-6. |
[42] | WANG R Z, WANG T P, MA Y Y, et al. Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface[J]. Journal of Power Sources, 2022, 544: 231854. DOI: 10.1016/j.jpowsour. 2022. 231854. |
[43] | 邵晴, 罗凌虹, 关成志, 等. 固体氧化物电池Ni-YSZ燃料电极长期稳定性研究进展[J]. 陶瓷学报, 2022, 43(5): 759-779. DOI: 10.13957/j.cnki.tcxb.2022.05.003. |
SHAO Q, LUO L H, GUAN C Z, et al. Research progress on the long-term stability of Ni-YSZ fuel electrodes in solid oxide cells[J]. Journal of Ceramics, 2022, 43(5): 759-779. DOI: 10.13957/j.cnki.tcxb.2022.05.003. | |
[44] | LIU J, YUAN H, QIAO J S, et al. Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(33): 17216-17220. DOI: 10.1039/c7ta04616b. |
[45] | ZAINON A N, SOMALU M R, KAMARUL BAHRAIN A M, et al. Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: A review[J]. International Journal of Hydrogen Energy, 2023, 48(53): 20441-20464. DOI: 10.1016/j.ijhydene.2022.12.192. |
[46] | CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15521-15530. DOI: 10.1016/j.ijhydene. 2018.06.114. |
[47] | SINGHAL S C. Progress in tubular solid oxide fuel cell technology[J]. ECS Proceedings Volumes, 1999, (1): 39-51. DOI: 10.1149/199919.0039pv. |
[48] | KUTERBEKOV K A, NIKONOV A V, BEKMYRZA K Z, et al. Classification of solid oxide fuel cells[J]. Nanomaterials, 2022, 12(7): 1059. DOI: 10.3390/nano12071059. |
[49] | 鲍晓囡, 张广君, 王绍荣. 阴极支撑型固体氧化物燃料电池的制备与测试[J]. 电化学, 2020, 26(2): 190-197. DOI: 10.13208/j.electrochem. 191149. |
BAO X N, ZHANG G J, WANG S R. Preparation and characterization of cathode supported solid oxide fuel cell[J]. Journal of Electrochemistry, 2020, 26(2): 190-197. DOI: 10. 13208/j.electrochem.191149. | |
[50] | LIU Y, HASHIMOTO S I, NISHINO H, et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation[J]. Journal of Power Sources, 2007, 174(1): 95-102. DOI: 10.1016/j.jpowsour.2007.08.101. |
[51] | CHEN G, YOU H X, KASAI Y, et al. Characterization of planer cathode-supported SOFC prepared by a dual dry pressing method[J]. Journal of Alloys and Compounds, 2011, 509(16): 5159-5162. DOI: 10.1016/j.jallcom.2010.10.218. |
[52] | LIU T, LIN J, LIU T, et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells[J]. Journal of Electroceramics, 2018, 40(2): 138-143. DOI: 10.1007/s10832-018-0112-7. |
[53] | 张英杰, 吴昊, 曾晓苑, 等. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 96-104. |
ZHANG Y J, WU H, ZENG X Y, et al. Research progress of the anode materials for direct carbon solid oxide fuel cells[J]. Materials Reports, 2020, 34(3): 96-104. | |
[54] | WILLIAMS K R, SMITH J G. Fuel cell with solid state electrolytes: US3464861A[P]. 1969-09-02. |
[55] | SCHILLER G, HENNE R H, LANG M, et al. Development of vacuum plasma sprayed thin-film SOFC for reduced operating temperature[J]. Fuel Cells Bulletin, 2000, 3(21): 7-12. DOI: 10. 1016/S1464-2859(00)88860-4. |
[56] | SIMNER S P, ANDERSON M D, XIA G G, et al. SOFC performance with Fe-Cr-Mn alloy interconnect[J]. Journal of the Electrochemical Society, 2005, 152(4): A740. DOI: 10.1149/1. 1864332. |
[57] | DHEERADHADA V S, CAO H B, ALINGER M J. Oxidation of ferritic stainless steel interconnects: Thermodynamic and kinetic assessment[J]. Journal of Power Sources, 2011, 196(4): 1975-1982. DOI: 10.1016/j.jpowsour.2010.09.099. |
[58] | Development of metal supported solid oxide fuel cells for operation at 500-600 ℃[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 2900-2903. DOI: 10.1007/s11665-013-0716-7. |
[59] | WANG Z W, BERGHAUS J O, YICK S, et al. Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units[J]. Journal of Power Sources, 2008, 176(1): 90-95. DOI: 10.1016/j.jpowsour.2007.10.002. |
[60] | CHOI J J, CHOI J H, RYU J, et al. Low temperature preparation and characterization of (La, Sr)(Ga, Mg)O3- δ electrolyte-based solid oxide fuel cells on Ni-support by aerosol deposition[J]. Thin Solid Films, 2013, 546: 418-422. DOI: 10.1016/j.tsf.2013.05.014. |
[61] | XU N, CHEN M, HAN M F. Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere[J]. Journal of Alloys and Compounds, 2018, 765: 757-763. DOI: 10.1016/j.jallcom. 2018. 04.326. |
[62] | NI W J, ZHU T L, CHEN X Y, et al. Coupling decreased polarization resistance Sr0.95Ti0.3Fe0.6Ni0.1O3- δ cathode with efficient metal supported Solid Oxide Fuel Cell[J]. Journal of Power Sources, 2021, 489: 229490. DOI: 10.1016/j.jpowsour. 2021.229490. |
[63] | LI K, LI X, LI J, et al. Structural stability of Ni-Fe supported solid oxide fuel cells based on stress analysis[J]. Journal of Inorganic Materials, 2019, 34(6): 611. DOI: 10.15541/jim20180398. |
[1] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[2] | Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||