[1] |
ULLAH F, ZHANG X X, KHAN M, et al. A comprehensive review of wind power integration and energy storage technologies for modern grid frequency regulation[J]. Heliyon, 2024, 10(9): e30466. DOI: 10.1016/j.heliyon.2024.e30466.
|
[2] |
LUNG L Y, CHOU T Y, CHANG W C, et al. Development of energy storage systems for high penetration of renewable energy grids[J]. Applied Sciences, 2023, 13(21): 11978. DOI: 10.3390/app132111978.
|
[3] |
BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. DOI: 10.1016/j.jpowsour.2016.12.011.
|
[4] |
EDGE J S, O'KANE S, PROSSER R, et al. Lithium ion battery degradation: What you need to know[J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8200-8221. DOI: 10.1039/D1CP00359C.
|
[5] |
WANG G Q, KONG D P, PING P, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process[J]. eTransportation, 2023, 16: 100237. DOI: 10.1016/j.etran.2023.100237.
|
[6] |
WANG C, LIU Z H, SUN Y H, et al. Aging behavior of lithium titanate battery under high-rate discharging cycle[J]. Energies, 2021, 14(17): 5482. DOI: 10.3390/en14175482.
|
[7] |
WANG Y, CHU Z Y, FENG X N, et al. Overcharge durability of Li4Ti5O12 based lithium-ion batteries at low temperature[J]. Journal of Energy Storage, 2018, 19: 302-310. DOI: 10.1016/j.est.2018.08.012.
|
[8] |
YANG W J, ZHANG M H, MA S D, et al. Li4Ti5O12-based battery energy storage system with dual-phase cathode[J]. Energy Technology, 2023, 11(11): 2200899. DOI: 10.1002/ente. 202200899.
|
[9] |
DANG G J, ZHANG M H, MIN F Q, et al. Lithium titanate battery system enables hybrid electric heavy-duty vehicles[J]. Journal of Energy Storage, 2023, 74: 109313. DOI: 10.1016/j.est. 2023. 109313.
|
[10] |
SU L S, BAZANT M Z, MILLNER A, et al. Degradation of commercial Li4Ti5O12-based lithium-ion batteries under extremely fast cycling rates[J]. Applied Energy, 2025, 386: 125594. DOI: 10.1016/j.apenergy.2025.125594.
|
[11] |
TAO X, WANG Q L, GUO W Q, et al. Influence of aviation low-pressure environment on the aging behavior and thermal safety of lithium titanate batteries[J]. Journal of Energy Storage, 2025, 112: 115488. DOI: 10.1016/j.est.2025.115488.
|
[12] |
汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. DOI: 10.19799/j.cnki.2095-4239.2023.0121.
|
|
WANG H H, LIU Y F, CHU D R. Calendar aging of lithium titanate battery with different state of charge[J]. Energy Storage Science and Technology, 2023, 12(8): 2606-2614. DOI: 10.19799/j.cnki. 2095-4239.2023.0121.
|
[13] |
BANK T, ALSHEIMER L, LÖFFLER N, et al. State of charge dependent degradation effects of lithium titanate oxide batteries at elevated temperatures: An in situ and ex-situ analysis[J]. Journal of Energy Storage, 2022, 51: 104201. DOI: 10.1016/j.est. 2022.104201.
|
[14] |
BANK T, FELDMANN J, KLAMOR S, et al. Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect[J]. Journal of Power Sources, 2020, 473: 228566. DOI: 10.1016/j.jpowsour.2020.228566.
|
[15] |
CHAHBAZ A, MEISHNER F, LI W H, et al. Non-invasive identification of calendar and cyclic ageing mechanisms for lithium-titanate-oxide batteries[J]. Energy Storage Materials, 2021, 42: 794-805. DOI: 10.1016/j.ensm.2021.08.025.
|
[16] |
LIU S J, WINTER M, LEWERENZ M, et al. Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature[J]. Energy, 2019, 173: 1041-1053. DOI: 10. 1016/j.energy.2019.02.150.
|
[17] |
SVENS P, ERIKSSON R, HANSSON J, et al. Analysis of aging of commercial composite metal oxide-Li4Ti5O12 battery cells[J]. Journal of Power Sources, 2014, 270: 131-141. DOI: 10.1016/j.jpowsour.2014.07.050.
|
[18] |
DUBARRY M, BERECIBAR M, DEVIE A, et al. State of health battery estimator enabling degradation diagnosis: Model and algorithm description[J]. Journal of Power Sources, 2017, 360: 59-69. DOI: 10.1016/j.jpowsour.2017.05.121.
|
[19] |
DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216. DOI: 10.1016/j.jpowsour.2012.07.016.
|
[20] |
CHEN H Z, CHAHBAZ A, YANG S J, et al. Thermodynamic and kinetic degradation of LTO batteries: Impact of different SOC intervals and discharge voltages in electric train applications[J]. eTransportation, 2024, 21: 100340. DOI: 10.1016/j.etran. 2024. 100340.
|