[1] |
刘洋恺, 孙伟卿, 刘唯. 基于AHP和TOPSIS-模糊综合评价的多场景储能选型方法[J]. 储能科学与技术, 2024, 13(2): 691-701. DOI: 10.19799/j.cnki.2095-4239.2023.0624.
|
|
LIU Y K, SUN W Q, LIU W. Multiscenario energy storage selection method based on AHP and TOPSIS-fuzzy comprehensive evaluation[J]. Energy Storage Science and Technology, 2024, 13(2): 691-701. DOI: 10.19799/j.cnki.2095-4239.2023.0624.
|
[2] |
周凡宇, 曾晋珏, 王学斌. 碳中和目标下电化学储能技术进展及展望[J]. 动力工程学报, 2024, 44(3): 396-405. DOI: 10.19805/j.cnki.jcspe.2024.230571.
|
|
ZHOU F Y, ZENG J J, WANG X B. Progress and prospect of electrochemical energy storage for carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 396-405. DOI: 10.19805/j.cnki.jcspe.2024.230571.
|
[3] |
魏文荣, 苗世洪, 王廷涛, 等. 计及储能电站荷电状态恢复和调整的电力系统调频指令最优分配方法[J]. 中国电机工程学报, 2024, 44(S1): 53-65. DOI: 10.13334/j.0258-8013.pcsee.232754.
|
|
WEI W R, MIAO S H, WANG T T, et al. Optimal distribution method for frequency regulation commands considering the state of charge recovery and adjustment[J]. Proceedings of the CSEE, 2024, 44(S1): 53-65. DOI: 10.13334/j.0258-8013.pcsee.232754.
|
[4] |
WEN Y L, HU Z C, CHEN X L, et al. Centralized distributionally robust chance-constrained dispatch of integrated transmission-distribution systems[J]. IEEE Transactions on Power Systems, 2023, 39(2): 2947-2959. DOI: 10.1109/TPWRS.2023.3318515.
|
[5] |
赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1799. DOI: 10.13334/j.0258-8013.pcsee.220778.
|
|
ZHAO D M, XU C Y, TAO R, et al. Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1799. DOI: 10.13334/j.0258-8013.pcsee.220778.
|
[6] |
HE G N, CHEN Q X, KANG C Q, et al. Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2359-2367. DOI: 10.1109/TSG.2015.2424314.
|
[7] |
陆秋瑜, 胡伟, 闵勇, 等. 集群风储联合系统广域协调优化控制[J]. 中国电机工程学报, 2014, 34(19): 3132-3140. DOI: 10.13334/j.0258-8013.pcsee.2014.19.012.
|
|
LU Q Y, HU W, MIN Y, et al. Wide-area coordinated optimization control of cluster wind-ESS integrated systems[J]. Proceedings of the CSEE, 2014, 34(19): 3132-3140. DOI: 10.13334/j.0258-8013.pcsee.2014.19.012.
|
[8] |
林莉, 金鑫, 朱丽云, 等. 考虑充放电能量不均衡的双电池系统状态评估与控制策略[J]. 电力系统自动化, 2018, 42(10): 128-134. DOI: 10.7500/AEPS20171107013.
|
|
LIN L, JIN X, ZHU L Y, et al. State evaluation and control strategy of dual-battery system considering unbalance of charging and discharging energy[J]. Automation of Electric Power Systems, 2018, 42(10): 128-134. DOI: 10.7500/AEPS20171107013.
|
[9] |
李军徽, 侯涛, 严干贵, 等. 计及调频成本和荷电状态恢复的多储能系统调频功率双层优化[J]. 中国电机工程学报, 2021, 41(23): 8020-8033. DOI: 10.13334/j.0258-8013.pcsee.202553.
|
|
LI J H, HOU T, YAN G G, et al. Two-layer optimization of frequency modulation power in multi-battery energy storage system considering frequency modulation cost and recovery of state of charge[J]. Proceedings of the CSEE, 2021, 41(23): 8020-8033. DOI: 10.13334/j.0258-8013.pcsee.202553.
|
[10] |
乔艺林, 王楚通, 熊厚博, 等. 基于发电侧共建共享的季节性-短期混合储能系统优化配置[J]. 可再生能源, 2025, 43(5): 654-662. DOI: 10.13941/j.cnki.21-1469/tk.2025.05.015.
|
|
QIAO Y L, WANG C T, XIONG H B, et al. Optimization of seasonal and short-term hybrid energy storage system based on co-construction and sharing of power generation side[J]. Renewable Energy Resources, 2025, 43(5): 654-662. DOI: 10. 13941/j.cnki.21-1469/tk.2025.05.015.
|
[11] |
李翠萍, 司文博, 李军徽, 等. 基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化[J]. 电工技术学报, 2024, 39(7): 2017-2032. DOI: 10.19595/j.cnki.1000-6753.tces.230186.
|
|
LI C P, SI W B, LI J H, et al. Two-layer optimization of frequency modulated power of thermal generation and multi-storage system based on ensemble empirical mode decomposition and multi-objective genetic algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2017-2032. DOI: 10.19595/j.cnki.1000-6753.tces.230186.
|
[12] |
FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. DOI: 10.1038/s41560-019-0474-3.
|
[13] |
沈馨, 张睿, 赵辰孜, 等. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki. 2095-4239.2022.0326.
|
|
SHEN X, ZHANG R, ZHAO C Z, et al. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki.2095-4239.2022.0326.
|
[14] |
黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239. 2024.0575.
|
|
HUANG J H, KUANG Z F. The forefront of the integration of artificial intelligence and energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239.2024.0575.
|
[15] |
袁誉杭, 高宇辰, 张俊东, 等. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki. 2095-4239.2024.0176.
|
|
YUAN Y H, GAO Y C, ZHANG J D, et al. The application of large language models in energy storage research[J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki.2095-4239.2024.0176.
|
[16] |
CHEN X, LIU X Y, SHEN X, et al. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angewandte Chemie International Edition, 2021, 60(46): 24354-24366. DOI: 10.1002/anie.202107369.
|
[17] |
YAO N, CHEN X, FU Z H, et al. Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. DOI: 10.1021/acs.chemrev.1c00904.
|
[18] |
张继阳, 郑秀, 赵斌, 等. 电网级大规模储能的电池技术进展[J]. 电池, 2024, 54(5): 745-750. DOI: 10.19535/j.1001-1579.2024.05.029.
|
|
ZHANG J Y, ZHENG X, ZHAO B, et al. Progress in battery technology for large-scale grid-level energy storage[J]. Battery Bimonthly, 2024, 54(5): 745-750. DOI: 10.19535/j.1001-1579. 2024.05.029.
|
[19] |
GAO Y C, YUAN Y H, HUANG S Z, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416506. DOI: 10.1002/anie.202416506.
|
[20] |
唐健, 何义琼, 于啸宇, 等. 考虑电力系统灵活性供需平衡的混合储能联合规划[J]. 可再生能源, 2024, 42(7): 946-954. DOI: 10.13941/j.cnki.21-1469/tk.2024.07.017.
|
|
TANG J, HE Y Q, YU X Y, et al. Joint planning of hybrid energy storage considering the flexibility of supply and demand balance in power system[J]. Renewable Energy Resources, 2024, 42(7): 946-954. DOI: 10.13941/j.cnki.21-1469/tk.2024.07.017.
|
[21] |
WANG Y, FENG X N, GUO D X, et al. Temperature excavation to boost machine learning battery thermochemical predictions[J]. Joule, 2024, 8(9): 2639-2651. DOI: 10.1016/j.joule.2024.07.002.
|