Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (5): 457-470.doi: 10.3969/j.issn.2095-4239.2014.05.003
• Research & development • Previous Articles Next Articles
YU Feng1, ZHU Mingyuan1, WANG Xugen1, WANG Gang1,2,3, QI Peirong1, CHEN Dong1, DAI Bin1
Received:
2014-05-21
Online:
2014-09-01
Published:
2014-09-01
CLC Number:
YU Feng, ZHU Mingyuan, WANG Xugen, WANG Gang, QI Peirong, CHEN Dong, DAI Bin. Clean energy and energy storage research --The 2nd international conference on clean energy sciences[J]. Energy Storage Science and Technology, 2014, 3(5): 457-470.
[1] Abstracts of the 1st International Conference on Clean Energy Science(1st ICCES)[C]// Royal Society of Chemistry,Dailian,China,2011. [2] Abstracts of the 2nd International Conference on Clean Energy Science(2nd ICCES)[C]// Royal Society of Chemistry,Qingdao,China,2014. [3] Krebs F C,Fyenbo J,Jorgensen M. Product integration of compact roll-to-roll processed polymer solar cell modules:Mmethods and manufacture using flexographic printing, slot-die coating and rotary screen printing[J]. J . Mater. Chem. ,2010,20(41):8994-9001. [4] Krebs F C,Nielsen T D,Fyenbo J,Wadstrom M,Pedersen M S. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative[J]. Energ. Environ. Sci. ,2010,3(5):512-525. [5] Krebs F C,Espinosa N,Hösel M,Søndergaard R R,Jørgensen M. 25th Anniversary article:Rise to power-OPV-based solar parks[J]. Adv. Mater. ,2014,26(1):29-39. [6] Qu Sanyan(瞿三寅),Hua Jianli(花建丽),Tian He(田禾). New D-π-A dyes for efficient dye-sensitized solar cells[J]. Sci.China : Chem. (中国科学:化学),2012,55(5):677-697. [7] Ying W,Yang J,Wielopolski M,Moehl T,Moser J E,Comte P,Hua J,Zakeeruddin S M,Tian H,Gratzel M. New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells[J]. Chem. Sci. ,2014,5(1):206-214. [8] Hu Jinlin(胡金林),Yang Qihao(杨其浩),Chen Jing(陈静),Wang Taiya(王太亚),Lin He(林鹤),Qian Haisheng(钱海生). Synthesis and applications of mesoporous TiO 2 functional nanomaterials[J]. Prog. Chem. (化学进展),2013,25(12):2080-2092. [9] Tian J,Lv L,Wang X,Fei C,Liu X,Zhao Z,Wang Y,Cao G. Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells[J]. J . Phys. Chem. C ,2014. doi:10.1021/jp412525k. [10] Zhang Q,Guo X,Huang X,Huang S,Li D,Luo Y,Shen Q,Toyoda T,Meng Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO 2 photoelectrodes[J]. Phys. Chem. Chem. Phys. ,2011,13(10):4659-4667. [11] Ahmad S,Bessho T,Kessler F,Baranoff E,Frey J,Yi C,Gratzel M,Nazeeruddin M K. A new generation of platinum and iodine free efficient dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys. ,2012,14(30):10631-10639. [12] Hou S,Cai X,Wu H,Yu X,Peng M,Yan K,Zou D. Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction[J]. Energ. Environ. Sci. ,2013,6(11):3356-3362. [13] Li Xiaohui(李晓慧),Fan Tongxiang(范同祥). Artificial photosynthesis[J]. Prog. Chem. (化学进展),2011,23(9):1841-1853. [14] Jiang Y,Li F,Zhang B,Li X,Wang X,Huang F,Sun L. Promoting the activity of catalysts for the oxidation of water with bridged dinuclear ruthenium complexes[J]. Angew. Chem. Int. Edit. ,2013,52(12):3398-3401. [15] Li F,Zhang B,Li X,Jiang Y,Chen L,Li Y,Sun L. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes[J]. Angew. Chem. Int. Edit. ,2011,50(51):12276-12279. [16] Li F,Jiang Y,Zhang B,Huang F,Gao Y,Sun L. Towards a solar fuel device:Light-driven water oxidation catalyzed by a supramolecular assembly[J]. Angew. Chem. Int. Edit. ,2012,51(10):2417-2420. [17] Shibata S,Suenobu T,Fukuzumi S. Direct synthesis of hydrogen peroxide from hydrogen and oxygen by using a water-soluble iridium complex and flavin mononucleotide[J]. Angew. Chem. Int. Edit. ,2013,52(47):12327-12331. [18] Kato S,Jung J,Suenobu T,Fukuzumi S. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen[J]. Energ. Environ. Sci. ,2013,6(12):3756-3764. [19] Yamada Y,Yoshida S,Honda T,Fukuzumi S. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energ. Environ. Sci. ,2011,4(8):2822-2825. [20] Yamada Y,Yoneda M,Fukuzumi S. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H 2 O 2 as a sustainable fuel at ambient conditions[J]. Chem. Eur. J. ,2013,19(35):11733-11741. [21] Yamada Y,Yoneda M,Fukuzumi S. High power density of one-compartment H 2 O 2 fuel cells using pyrazine-bridged Fe[MC(CN) 4 ](MC = Pt 2+ and Pd 2+ )complexes as the cathode[J]. Inorg. Chem. ,2014,53(3):1272-1274. [22] Zhou Wenli(周文理),Xie Qingji(谢青季),Lian Shixun(廉世勋). Photoelectrode materials for solar water splitting[J]. Prog. Chem. (化学进展),2013,25(12):1989-1998. [23] Yamada Y,Miyahigashi T,Kotani H,Ohkubo K,Fukuzumi S. Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl) quinolinium ion as a photocatalyst[J]. Energ. Environ. Sci. ,2012,5(3):6111-6118. [24] Wang W H,Hull J F,Muckerman J T,Fujita E,Himeda Y. Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure[J]. Energ. Environ. Sci. ,2012,5(7):7923-7926. [25] Tian J,Sang Y,Yu G,Jiang H,Mu X,Liu H. A Bi 2 WO 6 -based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Adv. Mater. ,2013,25(36):5075-5080. [26] Zhang Lei(章蕾),Xia Changrong(夏长荣). Low temperature solid oxide fuel cells[J]. Prog. Chem. (化学进展),2011,23(2-3):430-440. [27] Fan L,Wang C,Zhu B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy ,2012,1(4):631-639. [28] Wang X,Ma Y,Li S,Kashyout A H,Zhu B,Muhammed M. Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells[J]. J . Power Sources ,2011,196(5):2754-2758. [29] Zhu B,Raza R,Abbas G,Singh M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity[J]. Adv. Funct. Mater. ,2011,21(13):2465-2469. [30] Chen Lixiang(陈立香),Xiao Yong(肖勇),Zhao Feng(赵峰). Biocathodes in microbial fuel cells[J]. Prog. Chem. (化学进展),2012,24(1):157-162. [31] Garner L E,Thomas A W,Sumner J J,Harvey S P,Bazan G C. Conjugated oligoelectrolytes increase current response and organic contaminant removal in wastewater microbial fuel cells[J]. Energ. Environ. Sci. ,2012,5(11):9449-9452. [32] Hou H,Chen X,Thomas A W,Catania C,Kirchhofer N D,Garner L E,Han A,Bazan G C. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells[J]. Adv. Mater. ,2013,25(11):1593-1597. [33] Xia L,Liang B,Li L,Tang X,Palchetti I,Mascini M,Liu A. Direct energy conversion from xylose using xylose dehydrogenase surface displayed bacteria based enzymatic biofuel cell[J]. Biosen. Bioelectron. ,2013,44:160-163. [34] Liang B,Li L,Mascin M,Liu A. Construction of xylose dehydrogenase displayed on the surface of bacteria using ice nucleation protein for sensitive d-xylose detection[J]. Anal. Chem. ,2011,84(1):275-282. [35] Huang Zheng(黄征),Chi Bo(池波),Pu Jian(蒲健),Li Jian(李箭). New development of key materials for high-performance lithium-air batteries[J]. Prog. Chem. (化学进展),2013,25(2-3):260-269. [36] Cao R,Lee J S,Liu M,Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater. ,2012,2(7):816-829. [37] Liang H W,Liu J W,Qian H S,Yu S H. Multiplex templating process in one-dimensional nanoscale:Controllable synthesis, macroscopic assemblies, and applications[J]. Acc. Chem. Res. ,2013,46(7):1450-1461. [38] Chen W,Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J]. Nanoscale ,2011,3(8):3132-3137. [39] Peng C,Zhang S,Zhou X,Chen G Z. Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors[J]. Energ. Environ. Sci. ,2010,3(10):1499-1502. [40] Yu Feng(于锋),Zhang Jingjie(张敬杰),Wang Changyin(王昌胤),Yuan Jing(袁静),Yang Yanfeng(杨岩峰),Song Guangzhi(宋广智). Crystal structure and electrochemical performance of lithium ion battery cathode materials[J]. Prog. Chem. (化学进展),2010,22(1):9-18. [41] Yu F,Ge S G,Li B,Sun G Z,Mei R G,Zheng L X. Three-dimensional porous LiFePO 4 :Design, architectures and high performance for lithium ion batteries[J]. Curr. Inorg. Chem. ,2012,2(2):194-212. [42] Kang E,Jung Y S,Kim G H,Chun J,Wiesner U,Dillon A C,Kim J K,Lee J. Highly improved rate capability for a lithium-ion battery nano-Li 4 Ti 5 O 12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Adv. Funct. Mater. ,2011,21(22):4349-4357. [43] Su D,Ahn H J,Wang G. SnO 2 @graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance[J]. Chem. Commun. ,2013,49(30):3131-3133. [44] Su D W,Ahn H J,Wang G X. Beta-MnO 2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries[J]. Npg Asia Mater. ,2013,5(11):e70. doi:10.1038/am.2013.56. [45] Zhao M Q,Liu X F,Zhang Q,Tian G L,Huang J Q,Zhu W,Wei F. Graphene/single-walled carbon nanotube hybrids:One-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano ,2012,6(12):10759-10769. [46] Yan X,Liu Y,Zhao B,Wang Z,Wang Y,Liu C J. Methanation over Ni/SiO 2 :Effect of the catalyst preparation methodologies[J]. Int. J. Hydrogen Energy ,2013,38(5):2283-2291. [47] Khare S,Dell'Amico M. An overview of conversion of residues from coal liquefaction processes[J]. Can. J. Chem. Eng. ,2013,91(10):1660-1670. [48] Hulicova-Jurcakova D,Puziy A M,Poddubnaya O I,Suárez-García F,Tascón J M D,Lu G Q. Performance of supercapacitors from phosphorus-enriched carbons[J]. J. Am. Chem. Soc. ,2009,131(14):5026-5027. [49] Jiang Hongtao(姜洪涛),Hua Wei(华炜),Ji Jianbing(计建炳). Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog. Chem. (化学进展),2013,25(5):859-868. [50] Pan X,Bao X. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts Chem. Res. ,2011,44(8):553-562. [51] Guo X,Fang G,Li G,Ma H,Fan H,Yu L,Ma C,Wu X,Deng D,Wei M,Tan D,Si R,Zhang S,Li J,Sun L,Tang Z,Pan X,Bao X. Direct nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science ,2014,344(6184):616-619. [52] Zhang Jiaren(张家仁),Deng Tianyin(邓甜音),Liu Haichao(刘海超). Catalytic production of liquid biofuels from triglyceride feedstocks and lignocellulose[J]. Prog. Chem. (化学进展),2013,25(2-3):192-208. [53] Tu Junling(涂军令),Ding Mingyue(定明月),Li Yuping(李宇萍),Wang Tiejun(王铁军),Ma Longlong(马隆龙),Li Xinjun(李新军). Development of catalysts for biofuels production from biomass via fischer-tropsch synthesis[J]. Adv. New Renew. Energy (新能源进展),2014,2(2):94-103. [54] Gong Z W,Shen H W,Wang W,Yang X B,Xie H B,Zhao Z K. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process[J]. Biotechnol. Biofuels ,2013,6:36. [55] Zhou Y J,Gao W,Rong Q,Jin G,Chu H,Liu W,Yang W,Zhu Z,Li G,Zhu G,Huang L,Zhao Z K. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J. Am. Chem. Soc. ,2012,134(6):3234-3241. [56] Zhu Z,Zhang S,Liu H,Shen H,Lin X,Yang F,Zhou Y J,Jin G,Ye M,Zou H,Zhao Z K. A multi-omic map of the lipid-producing yeast rhodosporidium toruloides[J]. Nat. Commun. ,2012,3:1112. [57] Fan J,De bruyn M,Budarin V L,Gronnow M J,Shuttleworth P S,Breeden S,Macquarrie D J,Clark J H. Direct microwave-assisted hydrothermal depolymerization of cellulose[J]. J. Am. Chem. Soc. ,2013,135(32):11728-11731. [58] Budarin V L,Shuttleworth P S,Dodson J R,Hunt A J,Lanigan B,Marriott R,Milkowski K J,Wilson A J,Breeden S W,Fan J,Sin E H K,Clark J H. Use of green chemical technologies in an integrated biorefinery[J]. Energ. Environ. Sci. ,2011,4(2):471-479. [59] Yu F,Zhang L,Zhu M,An Y,Xia L,Wang X,Dai B. Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO 4 (M=Fe, Mn, Co and Ni) for Li-ion batteries[J]. Nano Energy ,2014,3:64-79. [60] White R J,Antonio C,Budarin V L,Bergström E,Thomas-Oates J,Clark J H. Polysaccharide-derived carbons for polar analyte separations[J]. Adv. Funct. Mater. ,2010,20(11):1834-1841. [61] Balu A M,Budarin V,Shuttleworth P S,Pfaltzgraff L A,Waldron K,Luque R,Clark J H. Valorisation of orange peel residues:Waste to biochemicals and nanoporous materials[J]. ChemSusChem ,2012,5(9):1694-1697. [62] Zhang Fang(张芳),Cheng Lihua(程丽华),Xu Xinhua(徐新华),Zhang Lin(张林),Chen Huanlin(陈欢林). Technologies of microalgal harvesting and lipid extraction[J]. Prog. Chem. (化学进展),2012,24(10):2062-2072. [63] Chen M,Liu T,Chen X,Chen L,Zhang W,Wang J,Gao L,Chen Y,Peng X. Subcritical co-solvents extraction of lipid from wet microalgae pastes of nannochloropsis sp[J]. Eur. J. Lipid Sci. Tech. ,2012,114(2):205-212. [64] Chen M,Chen X,Liu T,Zhang W. Subcritical ethanol extraction of lipid from wet microalgae paste of nannochloropsis sp[J]. J. Biobased Mater. Bio. ,2011,5(3):385-389. [65] Chen L,Liu T,Zhang W,Chen X,Wang J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion[J]. Bioresour. Technol. ,2012,111:208-214. [66] Wang H,Gao L,Chen L,Guo F, Liu T. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus[J]. Bioresour. Technol. ,2013,142:39-44. [67] Cheng P,Ji B,Gao L,Zhang W,Wang J,Liu T. The growth,lipid and hydrocarbon production of botryococcus braunii with attached cultivation[J]. Bioresour. Technol. ,2013,138:95-100. [68] Sayari A,Belmabkhout Y,Serna-Guerrero R. Flue gas treatment via CO 2 adsorption[J]. Chem. Eng. J. ,2011,171(3):760-774. [69] Sjostrom S,Krutka H. Evaluation of solid sorbents as a retrofit technology for CO 2 capture[J]. Fuel ,2010,89(6):1298-1306. [70] Sayari A,Heydari-Gorji A,Yang Y. CO 2 -Induced degradation of amine-containing adsorbents:Reaction products and pathways[J]. J. Am. Chem. Soc. ,2012,134(33):13834-13842. [71] Ahmadalinezhad A,Tailor R,Sayari A. Molecular-level insights into the oxidative degradation of grafted amines[J]. Chem. -Eur. J. ,2013,19(32):10543-10550. [72] Heydari-Gorji A,Belmabkhout Y,Sayari A. Polyethylenimine- impregnated mesoporous silica:Effect of amine loading and surface alkyl chains on CO 2 adsorption[J]. Langmuir ,2011,27(20):12411-12416. [73] Heydari-Gorji A,Yang Y,Sayari A. Effect of the pore length on CO 2 adsorption over amine-modified mesoporous silicas[J]. Energy Fuels ,2011,25(9):4206-4210. [74] Jin Zhiliang(靳治良),Qian Ling(钱玲),Lv Gongxuan(吕功煊). CO 2 chemistry-actuality and expectation[J]. Prog. Chem. (化学进展),2010,22(6):1102-1115. [75] Kuhl K.P,Cave E R,Abram D N,Jaramillo T F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energ. Environ. Sci. ,2012,5(5):7050-7059. [76] Jin F,Gao Y,Jin Y,Zhang Y,Cao J,Wei Z,Smith Jr R L. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles[J]. Energ. Environ. Sci. ,2011,4(3):881-884. [77] Marschall R. Semiconductor composites:Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. ,2014,24(17):2421-2440. [78] Wang X,Xu Q,Li M,Shen S,Wang X,Wang Y,Feng Z,Shi J,Han H,Li C. Photocatalytic overall water splitting promoted by an α-ββphase junction on Ga 2 O 3 [J]. Angew. Chem. Int. Edit. ,2012,51(52):13089-13092. [79] Wang P,Chen P,Kostka A,Marschall R,Wark M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production[J]. Chem. Mater. ,2013,25(23):4739-4745. [80] Liu Shusheng(刘淑生),Sun Lixian(孙立贤),Xu Fen(徐芬). Metal-N-H systems as hydrogen storage materials[J]. Prog. Chem. (化学进展),2008,20(2-3):280-287. [81] Adelhelm P,de Jongh P E. The impact of carbon materials on the hydrogen storage properties of light metal hydrides[J]. J . Mater. Chem. ,2011,21(8):2417-2427. [82] Yan Y,Au Y S,Rentsch D,Remhof A,de Jongh P E,Zuttel A. Reversible hydrogen storage in Mg(BH 4 ) 2 /carbon nanocomposites[J]. J. Mater. Chem. A ,2013,1(37):11177-11183. [83] Lai X Y,Halpert J E,Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications:From simple to complex systems[J]. Energ. Environ. Sci. ,2012,5(2):5604-5618. [84] Lai X Y,Li J,Korgel B A,Dong Z H,Li Z M,Su F B,Du J A,Wang D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres[J]. Angew. Chem. Int. Edit. ,2011,50(12):2738-2741. [85] Wang M,Sun Z,Yue Q,Yang J,Wang X,Deng Y,Yu C,Zhao D. An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres[J]. J. Am. Chem. Soc. ,2014,136(5):1884-1892. [86] Teng Z,Wang S,Su X,Chen G,Liu Y,Luo Z,Luo W,Tang Y,Ju H,Zhao D,Lu G. Facile synthesis of uolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels[J]. Adv. Mater. ,2014,26(22):3741-3747. [87] Na K,Jo C,Kim J,Cho K,Jung J,Seo Y,Messinger R J,Chmelka B F,Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science ,2011,333(6040):328-332. [88] Titirici M M,White R J,Falco C,Sevilla M. Black perspectives for a green future:Hydrothermal carbons for environment protection and energy storage[J]. Energ. Environ. Sci. ,2012,5(5):6796-6822. [89] Brun N,Sakaushi K,Yu L,Giebeler L,Eckert J,Titirici M M. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries[J]. Phys. Chem. Chem. Phys. ,2013,15(16):6080-6087. [90] Wohlgemuth S A,White R J,Willinger M G,Titirici M M,Antonietti M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J]. Green Chem. ,2012,14(5):1515-1523. |
[1] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[2] | Xi CHEN, Qian LIU, Jianghai XU, Shichun LONG, Zhongmin WAN. A combined heat power and hydrogen production system based on solar energy and Rankine cycle [J]. Energy Storage Science and Technology, 2021, 10(2): 611-616. |
[3] | Mingjun DU, Jiaqiang JING, Zhigui ZHANG, Jinshuai LI, Ran YIN. Study on key technologies of solar energy photothermal conversion for heavy oil thermal recovery [J]. Energy Storage Science and Technology, 2020, 9(S1): 62-69. |
[4] | WAN Qian, HE Luxi, HE Zhengbin, YI Songlin. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. |
[5] | LIU Kai, CAI Yingling. A new type of phase change heat storage tank in solar energy combination system [J]. Energy Storage Science and Technology, 2019, 8(6): 1230-1234. |
[6] | ZHU Chuang, TIE Shengnian, HAN Hongjing. Factors affecting the stability of nitrate molten salts at a high temperature [J]. Energy Storage Science and Technology, 2019, 8(1): 173-179. |
[7] | CHEN Hu, WU Yuting, LU Yuanwei, MA Chongfang. A review on molten salt-based nanofluids: Recent developments [J]. Energy Storage Science and Technology, 2018, 7(1): 48-. |
[8] | GU Qingzhi, ZHANG Yanmei, GUAN Hongyang, ZHANG Yawei, DUAN Yang, LIAO Wenjun. Transient analyses of a molten salt heat storage tanks [J]. Energy Storage Science and Technology, 2017, 6(4): 782-788. |
[9] | GUO Xiaojuan, DING Zhan, Frank G F QIN, YANG Xiaoping, HUANG Simin, JIANG Runhua, MA Yuanqiong, YIN Huibin, ZUO Yuanzhi, YANG Minlin, YANG Xiaoxi. A literature review on some engineering issues of high temperature molten salt thermal energy storage systems [J]. Energy Storage Science and Technology, 2015, 4(1): 32-43. |
[10] | WANG Yan, JIAN Yongfang, BAI Fengwu, TIAN Binshou, LI Yang. Heat transfer performance of concrete-based thermal storage modules for solar thermal heating systems [J]. Energy Storage Science and Technology, 2014, 3(3): 244-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||