Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (1): 24-34.doi: 10.12028/j.issn.2095-4239.2016.0037
Previous Articles Next Articles
WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2
Received:
2016-07-06
Revised:
2016-09-08
Online:
2017-01-03
Published:
2017-01-03
WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2. Review of recent advances in research of nanofluids[J]. Energy Storage Science and Technology, 2017, 6(1): 24-34.
[1] CHOI S U S. Nanofluids: From vision to reality through research[J]. J. Heat Transf.-Trans. ASME, 2009, 131(3): doi: 10.1115//1.3056479. [2] PARAMETTHANUWAT T, BHUWAKIETKUMJOHN N, RITTIDECH S, et al. Experimental investigation on thermal properties of silver nanofluids[J]. Int. J. Heat Fluid Flow, 2015, 56: 80-90. [3] CHEN H S, DING Y L. Heat transfer and rheological behaviour of nanofluids: A review//Advances in transport phenomena[M]. WANG L Q (eds.), Berlin Heidelberg: Springer-Verlag, 2009, 1: 135-177. [4] SHOGHL S N, JAMALI J, MORAVEJI M K. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study[J]. Exp. Therm. Fluid Sci., 2016, 74: 339-346. [5] SHARMA A K, TIWARI A K, DIXIT A R. Rheological behaviour of nanofluids: A review[J]. Renew. Sust. Energ. Rev., 2016, 53: 779-791. [6] OZERINC S, KAKAC S, YAZICIOGLU A G. Enhanced thermal conductivity of nanofluids: A state-of-the-art review[J]. Microfluid Nanofluid, 2010, 8: 145-170. [7] YU W, XIE H Q. A review on nanofluids: Preparation, stability mechanisms, and applications[J]. J. Nanomater, 2012: doi: 10.1155/2012/ 435873. [8] WANG B X, ZHOU L P, PENG X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. Int. J. Heat Mass Transf., 2003, 46: 2665-2672. [9] NAGASAKA Y, NAGASHIMA A. Absolute measurement of the thermal conductivity of electrically conducing liquids by the transient hot-wire method[J]. J. Phys. E, 1981, 14: 1435-1440. [10] WANG Z L, TANG D W, LIU S, et al. Thermal conductivity and thermal diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport[J]. Int. J. Thermophys., 2007, 28(4): 1255-1268. [11] 王照亮, 唐大伟, 郑兴华, 等. 利用3ω法同时测量纳米流体热导率和热扩散系数[J]. 化工学报, 2007, 58(10): 2462-2468. WANG Zhaoliang, TANG Dawei, ZHENG Xinghua, et al. Simultaneous measurements of thermal conductivity and thermal diffusivity of nanofluids using 3ω method[J]. CIESC Journal, 2007, 58(10): 2462-2468. [12] EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl. Phys. Lett., 2001, 78(6): 718-720. [13] LIU M S, LIN M C, TSAI C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. Int. J. Heat Mass Transf., 2006, 49: 3028-3033. [14] PATEL H E, DAS S K, SUNDARARAJAN T, et al. Thermal conductivity of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects[J]. Appl. Phys. Lett., 2003, 83: 2931-2933. [15] WANG C X, YANG J, DING Y L. Phase transfer based synthesis and thermophysical properties of Au/therminol VP-1 nanofluids[J]. Prog. Nat. Sci-Mater., 2013, 23: 338-342. [16] KANG H, KIM S, OH J. Estimation of thermal conductivity of nanofluid using experimental effective particle volume[J]. Exp. Heat Transfer, 2006, 19: 181-191. [17] HONG K S, HONG T K, YANG H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles[J]. Appl. Phys. Lett., 2006, 88: doi: 10.1063/1.2166199. [18] MASUDA H, EBATA A, TERAMAE K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles)[J]. Netsu Bussei (Japan), 1993, 7: 227-233. [19] CHON C H, KIHM K D, LEE S P, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement[J]. Appl. Phys. Lett., 2005, 87: 153107. [20] LEE S, CHOI S U S, LI S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J. Heat Transf.-Trans. ASME, 1999, 121: 280-289. [21] DAS S K, PUTRA N, THIESEN P, et al. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. J. Heat Transf.-Trans. ASME, 2003, 125: 567-574. [22] WEN D, DING Y. Formulation of nanofluids for natural convective heat transfer applications[J]. Int. J. Heat Fluid Flow, 2005, 26: 855-864. [23] MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water-based nanofluids[J]. Int. J. Therm. Sci., 2005, 44: 367-373. [24] HWANG Y, PARK H S, LEE J K, et al. Thermal conductivity and lubrication characteristics of nanofluids[J]. Curr. Appl. Phys., 2006, 6: e67-e71. [25] CHOI S U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl. Phys. Lett., 2001, 79: 2252-2254. [26] XIE H, LEE H, YOUN W, et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. J. Appl. Phys., 2003, 94: 4967-4971. [27] MARQUIS F D S, CHIBANTE L P F. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes[J]. J. Min. Met. Mater. Soc., 2005, 57: 32-43. [28] DING Y, ALIAS H, WEN D, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nanofluids)[J]. Int. J. Heat Mass Transf., 2006, 49: 240-250. [29] ASSAEL M J, METAXA I N, ARVANITIDIS J, et al. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the present of two different dispersants[J]. Int. J. Thermophys., 2005, 26: 647-664. [30] XIE H, WANG J, XI T, et al. Thermal conductivity of suspensions containing nanosized SiC particles[J]. Int. J. Thermophys., 2002, 23: 571-580. [31] Li C H, Peterson G P. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids[J]. J. Appl. Phys., 2007, 101: doi: 10.1063/1.2436472. [32] JIANG W, WANG L Q. Copper nanofluids: Synthesis and thermal conductivity[J]. Curr. Nanosci., 2010, 6: 512-519. [33] TIMOFEEVA E V, ROUTBORT J L, SINGH D. Particle shape effects on thermophysical properties of alumina nanofluids[J]. J. Appl. Phys., 2009, 106: doi: 10.1063/1.3155999. [34] XIE H, WANG J, XI T, et al. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid[J]. J. Mater. Sci. Lett., 2002, 21: 1469-1471. [35] LI X F, ZHU D S, WANG X J, et al. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids[J]. Thermochim. Acta, 2008, 469: 98-103. [36] MAXWELL J C. A Treatise on electricity and magnetism[M]. Cambridge: Oxford University Press, 2nd Ed., 1904: 435-441. [37] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous tow-component systems[J]. Ind. Eng. Chem. Res., 1962, 1: 187-191. [38] RAYLEIGH L. On the instability of a cylinder of viscous liquid under capillary force[J]. Philos. Mag. 1892, 34: 145-154. [39] JEFFREY D J. Conduction through a random suspension of spheres[J]. Prod. Royal Soc. London A, 1973, 335: 355-367. [40] DAVIS R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int. J. Thermophys., 1986, 7: 609-620. [41] XUE Q. Effective-medium theory for two-phase random composite with an interfacial shell[J]. J. Mater. Sci. Technol., 2000, 16: 367-369. [42] BENVENISTE Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case[J]. J. Appl. Phys., 1987, 61: 2840-2843. [43] KEBLINSKI P, PHILLPOT S R, CHOI S U S, EASTMAN J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. Int. J. Heat Mass Transf., 2002, 45: 855-863. [44] EVANS W, FISH J, KEBLINSKi P. Role of brownian motion hydrodynamcis on nanofluids thermal conductivity[J]. Appl. Phys. Lett., 2006, 88: doi: 10.1063/1.2179118. [45] SHENOGIN S, BODAPATI A, XUE L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites[J]. Appl. Phys. Lett., 2004, 85: 2229-2231. [46] SHENOGIN S, XUE L P, OZISIK R, et al. Role of thermal boundary resistance on the heat flow in carbon nanotube composites[J]. J. Appl. Phys., 2004, 95: 8136-8144. [47] PRASHER R, BHATTACHARYA P, PHELAN P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Phys. Rev. Lett., 2005, 94: doi: 10.1103/PhysRevLett.94.025901. [48] PUTNAM P A, CAHILL D G, BRAUN P V, et al. Thermal conductivity of nanoparticle suspensions[J]. J. Appl. Phys., 2006, 99: doi: 10.1063/1.2189933. [49] EVANS W, PRASHER R, FISH J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. Int. J. Heat Mass Transf., 2008, 51: 1431-1438. [50] LOTFIZADEH S, MATSOUKAS T. Effect of nanostructure on thermal conductivity of nanofluids[J]. J. Nanomater., 2015: doi: 10.1155/2015/697596. [51] CHEN H, WITHARANA S, JIN Y, et al. Predicting the thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology[J]. Particuology, 2009, 7: 151-157. [52] PANG C W, JUNG J Y, KANG Y T. Aggregation based model for heat conduction mechanism in nanofluids[J]. Int. J. Heat Mass Transf., 2014, 72: 392-399. [53] HERIS S Z, ETEMAD S G, ESFAHANY M N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer[J]. Int. Commun. Heat Mass Transf., 2006, 33: 529-535. [54] DAS S K, CHOI S U S, YU W. Nanofluids: Science and technology[M]. Hoboken: Wiley Interscience, 2007: 209-296. [55] MARTINEZ-CUENCA R, MONDRAGON R, ERNANDEZ L, et al. Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe[J], Appl. Therm Eng., 2016, 98: 841-849. [56] PUTRA N, ROETZEL W, DAS S. Natural convection of nano-fluids[J]. Heat Mass Transfer, 2003, 39: 775-784. [57] GOMEZ A O C, HOFFMANN A R K , BANDARRA E P. Experimental evaluation of CNT nanofluids in single-phase flow[J]. Int. J. Heat Mass Transf., 2015, 86: 277-287. [58] YU W H, TIMOFEEVA E V, SINGH D, et al. Investigations of heat transfer of copper-in-thermino nanofluids[J]. Int. J. Heat Mass Transf., 2013, 64: 1196-1204. [59] XUAN Y, LI Q. Investigation on convective heat transfer and flow features of nanofluids[J]. J. Heat Transfer, 2003, 125: 151-155. [60] LI Q, XUAN Y. Convective heat transfer and flow characteristics of Cu-water nanofluid[J]. Sci. in China (Series E), 2002, 45: 408-416. [61] HERIS S Z, ESFAHANY M N, ETEMAD S G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J]. Int. J. Heat Fluid Flow, 2007, 28: 203-210. [62] HE Y, JIN Y, CHEN H, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. Int. J. Heat Mass Transf., 2007, 50: 2272-2281. [63] PAK B C, CHOI Y L. hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Exp. Heat Transfer, 1998, 11: 151-170. [64] AMBURU P K, KULKARNI D P, DANDEKAR A, et al. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids[J]. Micro Nano Lett., 2007, 2: 67-71. [65] ZHOU S Q, NI R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid[J]. Appl. Phys. Lett., 2008, 92: doi: 10.1063/1.2890431. [66] VAJJHA R S, DAS D K. Specific heat measurement of three nanofluids and development of new correlations[J]. J. Heat Transfer-ASME, 2009, 131: doi: 10.1115/1.3090813. [67] 彭小飞, 俞小莉, 余凤芹. 低浓度纳米流体比热容试验研究[J]. 材料科学与工程学报, 2007, 25: 719-722. PENG Xiaofei, YU Xiaoli, YU Fengqin. Experimental study on the specific heat of nanofluids[J]. Journal of Materials Science and Engineering, 2007, 25: 719-722. [68] NELSON I C, BANERJEE D, RENGASAMY P. Flow loop experiments using polyalphaolefin nanofluids[J]. J. Thermophys. Heat Transfer, 2009, 23: 752-761. [69] SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. J. Heat Transfer, 2011, 133: doi: 10.1115/1.4002600. [70] SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. Int. J. Heat Mass Transf., 2011, 54: 1064-1070. [71] SYED T H, MUHAMMAD A S, MUHAMMAD S. Synthesis and characterization of nano heat transfer fluid (NHTF)[J]. Curr. Nanosci., 2012, 8: 232-238. [72] DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. Int. J. Therm Sci., 2013, 69: 37-42. [73] TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. Int. J. Heat Mass Transf., 2013, 57: 542-548. [74] TIZNOBAIK H, SHIN D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Appl. Phys. Lett., 2013, 102: doi: 10.1063/1.4801645. [75] MING X H, CHIN P. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. Int. J. Heat Mass Transf., 2014, 70: 174-184. [76] VERGARA O, HEITKANMP K, LOHNEYSEN H. Specific heat of small vanadium particles in the normal and superconducting state[J]. J. Phys. Chem. Solids, 1984, 45: 251-258. [77] SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Appl. Phys. Lett., 2014, 104: doi: 10.1063/1.4868254. [78] WANG B, ZHOU L, PENG X. Surface and size effects on the specific heat capacity of nanoparticles[J]. Int. J. Thermophys., 2006, 27: 139-151. [79] MEYER J P, ADIO S A, SHARIFPUR M, et al. The viscosity of nanofluids: A review of the theoretical, empirical, and numerical models[J]. Heat Transfer Eng., 2016, 37: 387-421. [80] LI H R, WANG L, HE Y R, et al. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids[J]. Appl. Therm. Eng., 2015, 88: 363-368. [81] RUDYAK V Y, KRASNOLUTSKII S L. Dependence of the viscosity of nanofluids on nanoparticle size and material[J]. Phys. Letters A, 2014, 378: 1845-1849. [82] PRASHER R, SONG D, WANG J. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Appl. Phys. Lett., 2006, 89: doi: 10.1063/1.2356113. [83] LI J M, LI Z, WANG B. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Sci. Technol., 2002, 7: 198-201. [84] DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J]. Int. J. Heat Mass Transf., 2003, 46: 851-862. [85] 李泽梁, 李俊明, 王补宣, 等. SDBS对氧化铜纳米颗粒悬浮液黏度的影响[J]. 工程热物理学报, 2003, 24(5): 849-851. LI Zeliang, LI Junming, WANG Buxuan, et al. Influence of sdbs on viscosity of copper oxide nano-suspensions[J]. Journal of Engineering Thermophysics, 2003, 24(5): 849-851. [86] EINSTEIN A. Eine neue bestimmung der molekul-dimension[J]. Annalen der Physik, 1906, 19: 289-306. [87] BATCHELOR G K. Effect of brownian-motion on bulk stress in a suspension of spherical-particles[J]. J. Fluid Mech., 1977, 83: 97-117. [88] KRIEGER I M, DOUGHERTY T J. A mechanism for non- newtonian flow in suspensions of rigid spheres[J]. J. Rheology, 1959, 3: 137-152. [89] 彭小飞, 俞小莉, 夏立峰, 等. 低浓度纳米流体黏度变化规律试验[J]. 农业机械学报, 2007, 38: 138-141. PENG Xiaofei, YU Xiaoli, XIA Lifeng, et al. Viscosity of low concentration nanofluids[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38: 138-141. [90] 郭顺松, 骆仲泱, 王涛, 等. SiO2纳米流体黏度研究[J]. 硅酸盐通报, 2006, 25: 52-55. GUO Shunsong, LUO Zhongyang, WANG Tao, et al. Viscosity of monodisperse silica nanofluids[J]. Bulletin of the Chinese Ceramic Society, 2006, 25: 52-55. [91] 刘玉东, 李夔宁, 童明伟, 等. TiO2-水纳米流体的黏度修正公式[J]. 重庆大学学报, 2006, 29: 52-55. LIU Yudong, LI Kuining, TONG Mingwei, et al. Viscosity- correction equations of TiO2-water nanofluids[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29: 52-55. [92] NAMBURU P K, KULKARNI D P, MISRA D, et al. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture[J]. Exp. Therm. Fluid Sci., 2007, 32: 397-402. [93] 饶坚, 陈沙鸥, 戚凭, 等. 分散剂(PMAA-NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响[J]. 青岛大学学报(自然科学版), 2003, 3: 37-39. RAO Jian, CHEN Sha’ou, Qi Ping, et al. Influence of pH values and dispersant mass fractions on dispersive property of nano-zirconia suspension[J]. Journal of Qingdao University(Natural Science Edition), 2003, 3: 37-39. [94] PENG X, YU X, XIA L, et al. Influence factors on suspension stability of nanofluids[J]. J. Zhejiang Univ.: Eng. Sci., 2007, 41: 577-580. [95] XIA G D, JIANG, H M, LIU R, et al. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids[J]. Int. J. Therm. Sci., 2014, 84: 118-124. [96] KIM H J , LEE S H, LEE J H, et al. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids[J]. Energy, 2015, 90: 1290-1297. [97] NOROOZI M, RADIMAN S, ZAKARIA A. Influence of sonication on the stability and thermal properties of Al2O3 nanofluids[J]. J. Nanomater., 2014, doi: 10.1155/2014/612417.
|
[1] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[2] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[3] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[4] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[5] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[6] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[7] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[8] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[9] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[10] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[11] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[12] | Xiangyu JIA, Junshui WANG, Yang XU, Kai ZHANG. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters [J]. Energy Storage Science and Technology, 2021, 10(5): 1643-1649. |
[13] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[14] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[15] | Al-jawfi IBRAHIM, Jiaqi ZHAO, Meng SHI, Xiaohong KANG. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||