Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 730-738.doi: 10.12028/j.issn.2095-4239.2017.0075
Previous Articles Next Articles
ZHANG Shuyang 1, XIA Yi2, ZHANG Xiaosong1
Received:
2017-05-25
Revised:
2017-06-20
Online:
2017-07-01
Published:
2017-07-01
ZHANG Shuyang 1, XIA Yi2, ZHANG Xiaosong1. An experimental study on a radiant floor system with double-layered phase change materials[J]. Energy Storage Science and Technology, 2017, 6(4): 730-738.
[1] SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al. Effect of internal void placement on the heat transfer performance—Encapsulated phase change material for energy storage[J]. Renewable Energy, 2015, 78: 438-447. [2] KARKRI M, LACHHEB M, NÓGELLOVÁ Z, et al. Thermal properties of phase-change materials based on high-density polyethylene filled with micro-encapsulated paraffin wax for thermal energy storage[J]. Energy and Buildings, 2015, 88: 144-152. [3] CAO L, TANG Y, FANG G. Preparation and properties of shape- stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage[J]. Energy, 2015, 80: 98-103. [4] MEMON S A, CUI H Z, ZHANG H, et al. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete[J]. Applied Energy, 2015, 139: 43-55. [5] LIU S, YANG H. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage[J]. Applied Clay Science, 2014, 101: 277-281. [6] PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. [7] ZENG J L, GAN J, ZHU F R, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 127: 122-128. [8] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage[J]. Applied Energy, 2014, 135: 339-349. [9] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2014, 88: 206-213. [10] SHARMA A, SHUKLA A, CHEN C R, et al. Development of phase change materials (PCMs) for low temperature energy storage applications[J]. Sustainable Energy Technologies and Assessments, 2014, 7: 17-21. [11] NITHYANANDAM K, PITCHUMANI R. Optimization of an encapsulated phase change material thermal energy storage system[J]. Solar Energy, 2014, 107: 770-788. [12] MURRAY R E, GROULX D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1. Consecutive charging and discharging[J]. Renewable Energy, 2014, 62: 571-581. [13] SONG S, DONG L, ZHANG Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385-389. [14] MURRAY R E, GROULX D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2. Simultaneous charging and discharging[J]. Renewable Energy, 2014, 63: 724-734. [15] TUMIRAH K, HUSSEIN M Z, ZULKARNAIN Z, et al. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage[J]. Energy, 2014, 66: 881-890. [16] FANG X, FAN L W, DING Q, et al. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80: 103-109. [17] AADMI M, KARKRI M, El HAMMOUTI M. Heat transfer characteristics of thermal energy storage of a composite phase change materials: umerical and experimental investigations[J]. Energy, 2014, 72: 381-392. [18] NKWETTA D N, HAGHIGHAT F. Thermal energy storage with phase change material— A state-of-the art review[J]. Sustainable Cities and Society, 2014, 10: 87-100. [19] ZHANG N, YUAN Y, YUAN Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-Stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110: 64-70. [20] QI G Q, LIANG C L, BAO R Y, et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materials and Solar Cells, 2014, 123: 171-177. [21] CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. [22] LIU C, GROULX D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system[J]. International Journal of Thermal Sciences, 2014, 82: 100-110. [23] TANG X, LI W, ZHANG X, et al. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage[J]. Energy, 2014, 68: 160-166. [24] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110: 163-172. [25] WANG W W, WANG L B, HE Y L. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit[J]. Applied Energy, 2015, 138: 169-182. [26] VERDIER D, FERRIÈRE A, FALCOZ Q, et al. Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver[J]. Energy Procedia, 2014, 49: 1044-1053. [27] BARRENECHE C, NAVARRO H, SERRANO S, et al. New database on phase change materials for thermal energy storage in buildings to help PCM selection[J]. Energy Procedia, 2014, 57: 2408-2415. [28] LÓPEZ-SABIRÓN A M, ROYO P, FERREIRA V J, et al. Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption[J]. Applied Energy, 2014, 135: 616-624. [29] FANG Y, LIU X, LIANG X, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556. [30] HAURIE L, MAZO J, DELGADO M, et al. Fire behaviour of a mortar with different mass fractions of phase change material for use in radiant floor systems[J]. Energy and Buildings, 2014, 84: 86-93. [31] JEON J, JEONG S G, LEE J H, et al. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system[J]. Solar Energy Materials and Solar Cells, 2012, 101: 51-56. [32] ZHOU G, HE J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes[J]. Applied Energy, 2015, 138: 648-660. [33] JIN X, ZHANG X. Thermal analysis of a double layer phase change material floor[J]. Applied Thermal Engineering, 2011, 31(10): 1576-1581. [34] 吴秀芬. 一种封装蓄能材料用于地板辐射采暖的理论与实验研究[D]. 北京: 北京建筑工程学院, 2006. WU Xiufen. The theoretical analysis & experimental research on floor radiant heating system with a kind of enclosed phase change material[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2006. [35] 何静. 相变材料蓄能式毛细管网地板辐射采暧热特性研究[D]. 北京: 华北电力大学, 2012. HE Jing. Thermal characteristics of radiant floor heating with energy storage capillary network with phase change material[D]. Beijing: North China Electric Power University, 2012. [36] 叶宏, 王军, 庄双勇, 等. 定形相变贮能式地板辐射采暖系统的实验研究[J]. 太阳能学报, 2004, 25(5): 651-656. YE Hong, WANG Jun, ZHUANG Shuangyong,et al. Experimental study on the radiant floor heating system utilizing form-stable PCM as the thermal mass[J]. Acta Energiae Solaris Sinica, 2004, 25(5): 651-656. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[3] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[4] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[5] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[6] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[7] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[8] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[9] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[10] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[11] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Numerical study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(1): 291-296. |
[12] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[13] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
[14] | Zheng LI, Zhen LIU, Huawei WU, Dongsheng XIE, Wei QIAN. The transient flow field characteristics of tangential leakage in scroll compressor [J]. Energy Storage Science and Technology, 2021, 10(5): 1579-1588. |
[15] | Lihui LIU, Hang ZHANG, Zian PENG, Jie LI, Xiaoqin SUN. Energy storage optimization of a plate-type phase change heat exchanger [J]. Energy Storage Science and Technology, 2021, 10(5): 1745-1752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||