[1] GANAPATHY S, WAGEMAKER M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion[J]. ACS Nano, 2012, 6(10):8702-8712.
[2] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells[J]. J. Electrochem. Soc., 1995, 142(5):1431-1435.
[3] RONCI F, REALE P, SCROSATI B, et al. High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 "zero-strain" insertion material[J]. Journal of Physical Chemistry B, 2002, 106(12):3082-3086.
[4] FERG E, GUMMOW R J, DEKOCK A, et al. Spinel anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 1994, 141(141):L147-L150.
[5] SCHARNER S, WEPPNER W, SCHMID-BEURMANN P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel[J]. Cheminform, 1999, 30(24):857-861.
[6] LEONIDOV I A, LEONIDOVA O N, PERELYAEVA L A, et al. Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12[J]. Physics of the Solid State, 2003, 45(11):2183-2188.
[7] WAGEMAKER M, SIMON D, KELDER E, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12[J]. Advanced Materials, 2010, 18(23):3169-3173.
[8] ZHANG W, TOPSAKAL M, CAMA C, et al. Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints[J]. Journal of the American Chemical Society, 2017, 139(46):16591-16603.
[9] GANAPATHY S, WAGEMAKER M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion[J]. ACS Nano, 2012, 6(10):8702-8712.
[10] DUAN H, LI J, DU H, et al. Tailoring native defects and zinc impurities in Li4Ti5O12:Insights from first-principles study[J]. Journal of Physical Chemistry C, 2015, 119:5238-5245
[11] ROBERTSON A D, TREVINO L, TUKAMOTO H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. Journal of Power Sources, 1999, 81(9):352-357.
[12] PROSINI P P, MANCINI R, PETRUCCI L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144(1):185-192.
[13] WOO S W, DOKKO K, KANAMURA K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12, anode for lithium batteries[J]. Electrochimica Acta, 2007, 53(1):79-82.
[14] LI J, TANG Z, ZHANG Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications, 2005, 7(9):894-899.
[15] ODZIOMEK M, CHAPUT F, RUTKOWSKA A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8:doi:10.1038/ncomms15636.
[16] BAI Y, WANG F, WU F, et al. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12[J]. Electrochim Aeta, 2008, 54:322-327.
[17] LIN C F, LAI M O, LU L, et al. Spinel Li4-2xCo3xTi5-xO12(0 ≤ x ≤ 0.5) for lithium-ion batteries:Crystal structures, material properties, and battery performances[J]. The Journal of Physical Chemistry C, 2014, 118(26):14246-14255.
[18] REN Y R, LU P, HUANG X B, et al. In-situ synthesis of nano-Li4Ti5O12/C composite as an anode material for Li-ion batteries[J]. Solid State Ionics, 2015, 274:83-87.
[19] LIU H P, WEN G W, BI S F, et al. Enhanced rate performance of nanosized Li4Ti5O12/graphene composites as anode material by a solid state-assembly method[J]. Electrochimica Acta, 2015, 171:114-120.
[20] HE Y, MUHETAER A, LI J, et al. Ultrathin Li4Ti5O12nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries[J]. Advanced Energy Materials, 2017, 7:doi:https://doi.org/10.1002/aenm.201700950.
[21] SHAO D, HE J R, LUO Y, et al. Synthesis and electrochemical performance of nanoporous Li4Ti5O12 anode material for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 16(6):2047-2053.
[22] JIANG C H, ZHOU Y, ITARY H, et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material[J]. Journal of Power Sources, 2007, 166(2):514-518.
[23] TANG Y F, YANG L, QIU Z, et al. Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries[J]. Journal of Materials Chemistry, 2009, 19(33):5980-5984.
[24] GUO M, WANG S Q, DING L X, et al. Tantalum-doped lithium titanate with enhanced performance for lithium-ion batteries[J]. Journal of Power Sources, 2015, 283:372-380.
[25] LUO H J, SHEN L F, RUI K, et al. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 572:37-42.
[26] XU G B, LI W, YANG L W, et al. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nano crystals as a high-performance anode material for lithium ion batteries[J]. Journal of Power Sources, 2015, 276:247-254.
[27] PARK H, SONG T, HAN H, et al. Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries[J]. Journal of Power Sources, 2013, 244:726-730.
[28] NORDH T, YOUNESI R, BRANDELL D, et al. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy[J]. Journal of Power Sources, 2015, 294:173-179.
[29] HE Y B, LI B, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 2(12):doi:10.1038/srep00913.
[30] FELL C R, SUN L, HALLAC P B, et al. Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(9):1916-1920.
[31] WU K, YANG J, LIU Y, et al. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2, cells at elevated temperature[J]. Journal of Power Sources, 2013, 237(3):285-290.
[32] WU K, YANG J, ZHANG Y, et al. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle[J]. Journal of Applied Electrochemistry, 2012, 42(12):989-995.
[33] AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li-ion batteries[J]. Journal of Power Sources, 2000, 89(2):206-218.
[34] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22):6332-6341.
[35] LIU J, BIAN P, LI J, et al. Gassing behavior of lithium titanate based lithium ion batteries with different types of electrolytes[J]. Journal of Power Sources, 2015, 286:380-387.
[36] SHIN J S, HAN C H, JUNG U H, et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1):47-52.
[37] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10):4303-4417.
[38] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22):6332-6341.
[39] LIU M, HE Y B, LV W, et al. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery[J]. Journal of Power Sources, 2014, 268:882-886.
[40] HAN C, HE Y B, LIU M, et al. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(14):doi:10.1039/C7TA00303J. |