Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 679-689.doi: 10.19799/j.cnki.2095-4239.2021.0408
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Bing CHEN1,2,3(), Lili ZHENG1,2,3, Xichao LI4, Yan FENG1,2,3, Zhuo XU1,2,3, Zuoqiang DAI1,2,3()
Received:
2021-08-06
Revised:
2021-10-12
Online:
2022-02-05
Published:
2022-02-08
Contact:
Zuoqiang DAI
E-mail:1504847530@qq.com;daizuoqiangqdu@163.com
CLC Number:
Bing CHEN, Lili ZHENG, Xichao LI, Yan FENG, Zhuo XU, Zuoqiang DAI. Discharge performance and charge-discharge heat generation characteristics of aging batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 679-689.
Table 5
Procedure for ISO thermal measurement and heat test"
试验步骤 | 名称 | 描述 |
---|---|---|
1 | Init circulator | 油浴温度稳定在25 ℃ |
2 | Init battery | 油浴给电池提供环境,使电池温度稳定在25 ℃ |
3 | Stab drop | 油浴降低至15 ℃,贴在电池上的补偿(功率)加热器开始工作,使电池稳定在25 ℃ |
4 | Calibration | 校准加热器模拟电池工作,系统调控使电池稳定在25 ℃,为测量电池发热提供算法支持 |
5 | Calibration | 校准加热器关闭,使各基线稳定 |
6 | Baseline | 稳定基线 |
7 | Discharge battery | 通过电池充放电仪使电池放电,等温量热仪测量计算数据 |
8 | Baseline | 放电结束,测量滞后的产热功率及产热量,稳定基线 |
9 | Discharge end cal | 放电结束后自动计算 |
10 | Charge baseline | 稳定基线 |
11 | Charge battery | 通过充放电仪使电池充电,等温量热仪测量计算数据 |
12 | Baseline | 充电结束,测量滞后的产热功率及产热量,稳定基线 |
13 | Charge end cal | 充电结束后的自动计算 |
14 | Circulator normal | 补偿加热器停止工作,油浴恢复至室温设定值 |
15 | Cool down | 油浴停止工作 |
16 | Stop | 试验完成,系统停止工作,数据自动保存 |
1 | DUNN J B, GAINES L, KELLY J C, et al. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction[J]. Energy & Environmental Science, 2015, 8(1): 158-168. |
2 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
3 | KVASHA A, GUTIÉRREZ C, OSA U, et al. A comparative study of thermal runaway of commercial lithium ion cells[J]. Energy, 2018, 159: 547-557. |
4 | 潘帅. 动力锂离子电池全生命周期内电热特性的演变规律研究[D]. 北京: 北京工业大学, 2020.PAN S. Study on evolution of electro-thermal characteristics of power lithium-ion battery during its entire life[D]. Beijing: Beijing University of Technology, 2020. |
5 | 动力锂电池老化概说[EB/OL]. (2017-11-10)[2021-10-7]. https://zhuanlan.zhihu.com/p/30932280.html.Overview of power lithium battery aging[EB/OL]. (2017-11-10)[2021-10-7]. https://zhuanlan.zhihu.com/p/30932280.html. |
6 | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. | |
7 | 丁黎, 李帆, 蔡文嘉, 等. 锂离子电池的老化特性分析[J]. 电源技术, 2019, 43(1): 77-80. |
DING L, LI F, CAI W J. Analysis on aging characteristics of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1): 77-80. | |
8 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325. |
9 | 张楠. 电动汽车用锂离子电池退化与剩余寿命预测研究[D]. 天津: 河北工业大学, 2019.ZHANG N. Research on degradation and remaining useful life prediction of lithium-ion battery for electric vehicles[D]. Tianjin: Hebei University of Technology, 2019. |
10 | 纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282. |
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282. | |
11 | SUN Y Q, KONG L X, KHAN H A, et al. Li-ion battery reliability-a case study of the apple iphone[J]. IEEE Access, 2019, 7: 71131-71141. |
12 | 李利淼, 吕岩, 仝俊利, 等. 锂离子电池负极衰减机理的研究进展[J]. 电源技术, 2017, 41(2): 318-320. |
LI L M, LÜ Y, TONG J L, et al. Research progress in anode decay mechanism of lithium ion battery[J]. Chinese Journal of Power Sources, 2017, 41(2): 318-320. | |
13 | 郭东亮, 陶风波, 孙磊, 等. 储能电站用磷酸铁锂电池循环老化机理研究[J]. 电源技术, 2020, 44(11): 1591-1593+1661. |
GUO D L, TAO F B, SUN L, et al. Research on cycle aging mechanism of lithium iron phosphate battery for energy storage power station[J]. Chinese Journal of Power Sources, 2020, 44(11): 1591-1593+1661. | |
14 | 王永红, 来文青, 石海鹏, 等. 三元锂离子电池容量衰减机理研究进展[J]. 化学通报, 2020, 83(9): 785-791. |
WANG Y H, LAI W Q, SHI H P, et al. Research progress in capacity fading mechanisms of ternary lithium ion batteries[J]. Chemistry, 2020, 83(9): 785-791. | |
15 | TODOROV G N, VLASOV A I, VOLKOVA E E, et al. Sustainability in local power supply systems of production facilities where there is the compensatory use of renewable energy sources[J]. International Journal of Energy Economics and Policy, 2020, 10(3): 14-23. |
16 | 阮海军. 低温环境下锂离子电池优化加热及充电方法研究[D]. 北京: 北京交通大学, 2019.RUAN H J. Optimal heating and charging methods for lithium-ion batteries under the low-temperature environment[D]. Beijing: Beijing Jiaotong University, 2019. |
17 | ZHU G L, WEN K C, LÜ W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40. |
18 | SELIVANOV K V, VLASOV A I, SHAKHNOV V A. Analysis of factors affecting the capacity of Li-ion rechargeable batteries at low temperatures[J]. Journal of Physics: Conference Series, 2020, 1679(2): 022053. |
19 | SINGER J P, BIRKE K P. Kinetic study of low temperature capacity fading in Li-ion cells[J]. Journal of Energy Storage, 2017, 13: 129-136. |
20 | 孙智鹏, 陈立铎, 徐梓荐, 等. 锂离子电池典型温度与倍率放电特性分析[J]. 电源技术, 2020, 44(8): 1090-1092+1222. |
SUN Z P, CHEN L D, XU Z J, et al. Analysis of typical temperature and rate discharge characteristics of Li-ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(8): 1090-1092+1222. | |
21 | 路露, 周小红, 余乐平, 等. 锂离子电池低温性能研究进展[J]. 化工新型材料, 2021, 49(11): 55-58. |
LU L, ZHOU X H, YU L P, et al. Research progress on low temperature performance of lithium ion battery[J]. New Chemical Materials, 2021, 49(11): 55-58. | |
22 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
23 | LIU C Y, XU F, LIU Y L, et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing[J]. Electrochim Acta, 2019, 314: 81-88. |
24 | ZHU J G, KNAPP M, DEWI DARMA M S, et al. An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application[J]. Applied Energy, 2019, 248: 149-161. |
25 | 王康康. 基于衰退老化状态的动力锂离子电池热效应分析[D]. 北京: 北京理工大学, 2018.WANG K K. Study on thermal effect of aged traction lithium ion batteries[D]. Beijing: Beijing Institute of Technology, 2018. |
26 | 冯燕, 郑莉莉, 戴作强, 等. 18650三元锂离子电池的放电热特性[J]. 储能科学与技术, 2021, 10(1): 319-325. |
FAN Y, ZHENG L L, DAI Z Q, et al. Thermal characteristics of 18650 ternary Li-ion battery during discharge[J]. Energy Storage Science and Technology, 2021, 10(1): 319-325. | |
27 | 曹志良. 锂电池充放电内阻的理论分析与试验研究[J]. 电子器件, 2019, 42(1): 132-137. |
CAO Z L. Theoretical Analysis and Experimental Study on Internal Resistance of Lithium Battery[J]. Chinese Journal of Electron Devices, 2019, 42(1): 132-137. | |
28 | 毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127. |
MAO Y, BAI Q Y, MA S D. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127. | |
29 | 云凤玲, 卢世刚. 基于高镍三元材料锂离子动力电池在循环前后的热特性分析[J]. 稀有金属, 2018, 42(2): 182-190. |
YUN F L, LU S G. Thermal characteristic analysis of lithium ion power battery based on high nickel ternary material before and after cycle[J]. Chinese Journal of Rare Metals, 2018, 42(2): 182-190. | |
30 | LIN N, JIA Z, WANG Z H, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. |
31 | HAN X B, LU L G, ZHENG YJ, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. |
32 | 刘家龙. 18650型三元锂离子电池微过充老化与安全性研究[D]. 合肥: 中国科学技术大学, 2021.LIU J L. Aging and safety behaviors of18650 ternary lithium-ion battery caused by slight overcharging[D]. Hefei: University of Science and Technology of China, 2021. |
33 | 吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018.WU T Q. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[D]. Hefei: University of Science and Technology of China, 2018. |
34 | 黄海. 锂离子动力电池老化特性研究与循环寿命预测[D]. 济南: 山东大学, 2016.HUANG H. Research on aging performances and cycle-life predictions of Li-ion battery[D]. Jinan: Shandong University, 2016. |
35 | 陈虎, 熊辉, 厉运杰, 等. 锂离子电池产热特性研究进展[J]. 储能科学与技术, 2019, 8(S1): 49-55. |
CHEN H, XIONG H, LI Y J, et al. Research progress on thermogenic characteristics of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 49-55. |
[1] | Xiaomei LIU, Bin YAO, Leqiong XIE, Qiao HU, Li WANG, Xiangming HE. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures [J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. |
[2] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[3] | ZHANG Zhichao, ZHENG Lili, DU Guangchao, FENG Yan, WANG Dong, DAI Zuoqiang, ZHANG Hongsheng. Review of research on heat generation characteristics during charging and discharging of lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 32-37. |
[4] | ZHANG Yaosheng, LIU Zhien, SUN Xianzhong, AN Yabin, ZHANG Xiong, MA Yanwei. Thermal simulation for lithium-ion capacitor during discharge process [J]. Energy Storage Science and Technology, 2019, 8(5): 922-929. |
[5] | DU Guangchao, ZHENG Lili, ZHANG Zhichao, FENG Yan, WANG Dong, DAI Zuoqiang. Overview of research on thermal safety of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 500-505. |
[6] | JIN Biao,JIANG Bin,LIU Fangfang,JIANG Bingchun. Thermal characteristic analysis and optimization for vehicle power lithium battery [J]. Energy Storage Science and Technology, 2018, 7(1): 128-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||