1 |
XU Y H, WU Y P, ZHANG M M, et al. Sensitivity of programmable logic controllers to voltage sags[J]. IEEE Transactions on Power Delivery, 2019, 34(1): 2-10.
|
2 |
LIAO H L, MILANOVIĆ J V, RODRIGUES M, et al. Voltage sag estimation in sparsely monitored power systems based on deep learning and system area mapping[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 3162-3172.
|
3 |
刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716.
|
|
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716.
|
4 |
李建林, 李雅欣, 周喜超, 等. 储能商业化应用政策解析[J]. 电力系统保护与控制, 2020, 48(19): 168-178.
|
|
LI J L, LI Y X, ZHOU X C, et al. Analysis of energy storage policy in commercial application[J]. Power System Protection and Control, 2020, 48(19): 168-178.
|
5 |
国家能源局. 关于加快推动新型储能发展的指导意见[EB/OL].[2021-07-15]. http://www.nea.gov.cn.
|
6 |
杨帆, 张章, 徐晶, 等. 面向可靠性提升的配电网分布式储能规划[J]. 电力电容器与无功补偿, 2022, 43(1): 188-196.
|
|
YANG F, ZHANG Z, XU J, et al. Distributed energy storage planning of distribution network for reliability improvement[J]. Power Capacitor & Reactive Power Compensation, 2022, 43(1): 188-196.
|
7 |
丁凯, 郑剑, 李伟, 等. 基于用户侧储能的电压暂降分级治理方案及其经济性分析[J]. 储能科学与技术, 2022, 11(10): 3381-3390.
|
|
DING K, ZHENG J, LI W, et al. Hierarchical control scheme of voltage sag based on user-side energy storage and its economic analysis[J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390.
|
8 |
汪颖, 喻梦洁, 卢宏, 等. 基于最大互信息的干扰源类型识别及电能质量需求画像技术[J]. 电力系统自动化, 2022, 46(9): 171-181.
|
|
WANG Y, YU M J, LU H, et al. Interference source type identification and power quality demand portrait technology based on maximum mutual information[J]. Automation of Electric Power Systems, 2022, 46(9): 171-181.
|
9 |
汪颖, 王曼, 陈韵竹, 等. 基于多维关联信息的电压暂降治理需求识别[J]. 电网技术, 2022, 46(11): 4391-4402.
|
|
WANG Y, WANG M, CHEN Y Z, et al. Demand identification of voltage sag control based on multidimensional correlation information[J]. Power System Technology, 2022, 46(11): 4391-4402.
|
10 |
栾乐, 马智远, 莫文雄, 等. 综合考虑供用电双方需求的优质电力用户分类方法[J]. 电力科学与技术学报, 2021, 36(6): 171-181.
|
|
LUAN L, MA Z Y, MO W X, et al. A premium user classification method considering the demand of both power company and electricity user[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 171-181.
|
11 |
马智远, 莫文雄, 许中, 等. 用户供电质量需求识别与优质供电增值服务策略[J]. 四川电力技术, 2020, 43(2): 24-32.
|
|
MA Z Y, MO W X, XU Z, et al. User power supply quality demand identification and strategy for value-added service of premium power supply[J]. Sichuan Electric Power Technology, 2020, 43(2): 24-32.
|
12 |
陈逸涵, 李扬, 沈运帷. 基于负荷控制潜力量化模型的工业用户群体画像方法[J]. 电力自动化设备, 2021, 41(8): 208-216.
|
|
CHEN Y H, LI Y, SHEN Y W. Industrial customer group portrait method based on potential quantization model of load control[J]. Electric Power Automation Equipment, 2021, 41(8): 208-216.
|
13 |
任炳俐, 张振高, 王学军, 等. 基于用电采集数据的需求响应削峰潜力评估方法[J]. 电力建设, 2016, 37(11): 64-70.
|
|
REN B L, ZHANG Z G, WANG X J, et al. Assessment method of demand response peak shaving potential based on metered load data[J]. Electric Power Construction, 2016, 37(11): 64-70.
|
14 |
孙毅, 贾孟扬, 陆俊, 等. 计及用户需求响应的智能用电互动潜力分析[J]. 电力科学与技术学报, 2016, 31(4): 43-50.
|
|
SUN Y, JIA M Y, LU J, et al. Analysis on interactive potential of intelligent power utilization considering user demand response[J]. Journal of Electric Power Science and Technology, 2016, 31(4): 43-50.
|
15 |
徐永海, 李晨懿, 汪坤, 等. 低压变频器对电网电压暂降耐受特性及兼容性研究[J]. 电工技术学报, 2019, 34(10): 2216-2229.
|
|
XU Y H, LI C Y, WANG K, et al. Compatibility between low voltage variable-frequency drives and voltage sags in distribution systems[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2216-2229.
|
16 |
汪颖, 陈春林, 肖先勇, 等. 电压暂降敏感设备耐受能力自动测试方法[J]. 电力系统自动化, 2020, 44(20): 127-135.
|
|
WANG Y, CHEN C L, XIAO X Y, et al. Automatic test method for tolerance capability of voltage sag sensitive equipment[J]. Automation of Electric Power Systems, 2020, 44(20): 127-135.
|
17 |
冯丹丹. 基于随机森林的电能质量干扰源识别[C]//第九届电能质量研讨会论文集. 南京, 2018: 117-127.
|
18 |
康世崴, 彭建春, 何禹清. 模糊层次分析与多目标决策相结合的电能质量综合评估[J]. 电网技术, 2009, 33(19): 113-118.
|
|
KANG S W, PENG J C, HE Y Q. Comprehensive evaluation of power quality based on the integration of fuzzy analytic hierarchy process with multi-objective decision-making[J]. Power System Technology, 2009, 33(19): 113-118.
|
19 |
赵玉铃, 张廉. 基于联系数的组合赋权电能质量评估[J]. 数学的实践与认识, 2013, 43(23): 99-107.
|
|
ZHAO Y L, ZHANG L. On power quality evaluation of combination weighting based on connection number[J]. Mathematics in Practice and Theory, 2013, 43(23): 99-107.
|
20 |
赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000.
|
|
ZHAO K Q. Set pair analysis and its preliminary application[M]. Hangzhou: Zhejiang Science & Technology Press, 2000.
|
21 |
赵洪山, 李静璇, 米增强, 等. 基于CRITIC和改进Grey-TOPSIS的电能质量分级评估方法[J]. 电力系统保护与控制, 2022, 50(3): 1-8.
|
|
ZHAO H S, LI J X, MI Z Q, et al. Grading evaluation of power quality based on CRITIC and improved Grey-TOPSIS[J]. Power System Protection and Control, 2022, 50(3): 1-8.
|
22 |
ILANGKUMARAN M, PRABHU S R. Selection of 3D printer based on FAHP integrated with GRA-TOPSIS[J]. International Journal of Materials and Product Technology, 2019, 58(2/3): 155.
|
23 |
张许英龙, 张显权, 程子廉. AHP-TOPSIS-GRA法在办公座椅设计方案评价中的应用[J]. 林业工程学报, 2022, 7(4): 181-186.
|
|
ZHANG X Y L, ZHANG X Q, CHENG Z L. Research on office chair design evaluation using AHP-TOPSIS-GRA method[J]. Journal of Forestry Engineering, 2022, 7(4): 181-186.
|
24 |
李鸿鑫, 张华赢, 汪清, 等. 基于双因素理论的电能质量敏感用户需求识别[J]. 科学技术与工程, 2020, 20(33): 13697-13704.
|
|
LI H X, ZHANG H Y, WANG Q, et al. Demand identification of users sensitive to power quality based on two-factor theory[J]. Science Technology and Engineering, 2020, 20(33): 13697-13704.
|
25 |
薛金花, 叶季蕾, 陶琼, 等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术, 2016, 40(8): 2471-2476.
|
|
XUE J H, YE J L, TAO Q, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476.
|