Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3949-3960.doi: 10.19799/j.cnki.2095-4239.2024.0386
• Energy Storage System and Engineering • Previous Articles Next Articles
Xinqiao FAN1(), Kuan ZHANG1(), Bo ZHAO1(), Min LIU2, Qiliang WU2
Received:
2024-05-06
Revised:
2024-08-30
Online:
2024-11-28
Published:
2024-11-27
Contact:
Kuan ZHANG, Bo ZHAO
E-mail:fxq8226@163.com;18601247693@163.com;lingshanisland@126.com。
CLC Number:
Xinqiao FAN, Kuan ZHANG, Bo ZHAO, Min LIU, Qiliang WU. Research on virtual synchronous control technology for PEM electrolysis hydrogen production[J]. Energy Storage Science and Technology, 2024, 13(11): 3949-3960.
1 | 程文姬, 赵磊, 郗航, 等. "十四五" 规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188. DOI: 10.19666/j.rlfd. 202207125. |
CHENG W J, ZHAO L, XI H, et al. Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan[J]. Thermal Power Generation, 2022, 51(11): 181-188. DOI: 10.19666/j.rlfd.202207125. | |
2 | 李建林, 赵文鼎, 梁忠豪, 等. 基于混合电解槽制氢系统的功率分配技术[J/OL]. 电力系统自动化, 2024.(2024-03-23)[2024-04-01]. https://kns.cnki.net/kcms/detail/32.1180.TP.20240321.1035.008.html. |
LI J L, ZHAO W D, LIANG Z H, et al. Power distribution technology based on hybrid electrolyzer hydrogen production system [J/OL]. Automation of Electric Power Systems, 2024.(2024-03-23) [2024-04-01]. https://kns.cnki.net/kcms/detail/32.1180.TP.20240321.1035.008.html. | |
3 | 袁铁江, 张红, 杨洋, 等. 新能源-PEM电解制氢全寿命经济性评估[J]. 中国电力, 2023, 56(3): 30-35, 46. DOI: 10.11930/j.issn.1004-9649.202104040. |
YUAN T J, ZHANG H, YANG Y, et al. Whole life cycle economic assessment of renewable energy-PEM electrolyzer hydrogen production[J]. Electric Power, 2023, 56(3): 30-35, 46. DOI: 10.11930/j.issn.1004-9649.202104040. | |
4 | 李楠楠. 阴离子交换膜电解水制氢非碳基膜电极的研究[D]. 大连: 大连理工大学, 2022. DOI: 10.26991/d.cnki.gdllu.2022.001987. |
LI N N. Study on non-carbon basement membrane electrode for hydrogen production by electrolysis of water with anion exchange membrane[D]. Dalian: Dalian University of Technology, 2022. DOI: 10.26991/d.cnki.gdllu.2022.001987. | |
5 | 赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. |
HE Y Q, ZHANG X Y, WANG W Q, et al. Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. | |
6 | 王林, 刘晓莎, 胡平, 等. 固体氧化物电解槽辅助煤电机组深度调峰技术可行性研究[J]. 热力发电, 2024, 53(2): 133-141. DOI: 10. 19666/j.rlfd.202401001. |
WANG L, LIU X S, HU P, et al. Feasibility study on deep peak shaving technology for SOEC assisted coal-fired power units[J]. Thermal Power Generation, 2024, 53(2): 133-141. DOI: 10.19666/j.rlfd.202401001. | |
7 | 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199. DOI: 10.7500/AEPS 20201101004. |
GUO X Q, WEI Y P, WAN Y M, et al. Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(20): 185-199. DOI: 10.7500/AEPS20201101004. | |
8 | 孔令国, 宫健, 杨士慧, 等. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. DOI: 10.12096/j.2096-4528.pgt.22187. |
KONG L G, GONG J, YANG S H, et al. Development status and trend of DC/DC isolated hydrogen production power supply[J]. Power Generation Technology, 2023, 44(4): 443-451. DOI: 10. 12096/j.2096-4528.pgt.22187. | |
9 | SCHUMANN M, COSSE C, BECKER D, et al. Modeling and experimental parameterization of an electrically controllable PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(56): 28734-28747. DOI: 10.1016/j.ijhydene.2021.06.107. |
10 | DOBÓ Z, PALOTÁS Á B. Impact of the current fluctuation on the efficiency of Alkaline Water Electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5649-5656. DOI: 10.1016/j.ijhydene.2016.11.142. |
11 | 季清, 阮新波, 谢立宏, 等. 平均电流控制的Boost PFC变换器最恶劣传导EMI频谱分析[J]. 中国电机工程学报, 2014, 34(6): 982-992. DOI: 10.13334/j.0258-8013.pcsee.2014.06.021. |
JI Q, RUAN X B, XIE L H, et al. Analysis of the worst conducted EMI spectrum of the average current controlled boost PFC converter[J]. Proceedings of the CSEE, 2014, 34(6): 982-992. DOI: 10.13334/j.0258-8013.pcsee.2014.06.021. | |
12 | 汪莉丽. 峰值电流模式控制Boost PFC变换器斜波补偿设计[J]. 电源技术, 2012, 36(3): 384-387. DOI: 10.3969/j.issn.1002-087X. 2012.03.028. |
WANG L L. Slope compensation design in peak current mode controlled PFC boost converter[J]. Chinese Journal of Power Sources, 2012, 36(3): 384-387. DOI: 10.3969/j.issn.1002-087X. 2012.03.028. | |
13 | 宋卫章, 黄骏, 钟彦儒, 等. 带中点电位平衡控制的Vienna整流器滞环电流控制方法[J]. 电网技术, 2013, 37(7): 1909-1914. DOI: 10.13335/j.1000-3673.pst.2013.07.033. |
SONG W Z, HUANG J, ZHONG Y R, et al. A hysteresis current control method with neutral point potential balancing control for Vienna rectifier[J]. Power System Technology, 2013, 37(7): 1909-1914. DOI: 10.13335/j.1000-3673.pst.2013.07.033. | |
14 | ZHONG Q C, NGUYEN P L, MA Z Y, et al. Self-synchronized synchronverters: Inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630. DOI: 10.1109/TPEL.2013.2258684. |
15 | 吴佳骜. 基于虚拟同步发电机的控制策略在微电网中的研究及应用[D]. 长春: 长春工业大学, 2021. DOI: 10.27805/d.cnki.gccgy. 2021.000667. |
WU J A. Research and application of control strategy based on virtual synchronous generator in microgrid[D]. Changchun: Changchun University of Technology, 2021. DOI: 10.27805/d.cnki.gccgy.2021.000667. | |
16 | 袁铁江, 张江飞, 滕越. 基于虚拟同步机的新能源制氢系统协调控制策略[J/OL]. 中国电机工程学报, (2023-08-11) [2024-05-02]. https://kns.cnki.net/kcms/detail/11.2107.TM.20230811.0904.002.html. |
YUAN T J, ZHANG J F, TENG Y. Coordinated control strategy of the renewable energy hydrogen production system based on VSG [J/OL]. Proceedings of the CSEE, (2023-08-11) [2024-05-02]. https://kns.cnki.net/kcms/detail/11.2107.TM.20230811. 0904. 002.html. | |
17 | 吕志鹏, 梁英, 曾正, 等. 应用虚拟同步电机技术的电动汽车快充控制方法[J]. 中国电机工程学报, 2014, 34(25): 4287-4294. DOI: 10.13334/j.0258-8013.pcsee.2014.25.011. |
LÜ Z P, LIANG Y, ZENG Z, et al. Virtual synchronous motor based control scheme of fast charger for electric vehicle application[J]. Proceedings of the CSEE, 2014, 34(25): 4287-4294. DOI: 10.13334/j.0258-8013.pcsee.2014.25.011. | |
18 | 王雪瑞, 曹鑫, 郝振洋. 基于虚拟同步机的三相整流器直接功率控制[J]. 电力电子技术, 2019, 53(6): 49-52. |
WANG X R, CAO X, HAO Z Y. Direct power control of three-phase rectifier based on virtual synchronous machine[J]. Power Electronics, 2019, 53(6): 49-52. | |
19 | 游芳, 魏金成, 王嘉磊, 等. 基于VSG的新型三相PWM整流技术[J]. 电焊机, 2015, 45(6): 34-40. DOI: 10.7512/j.issn.1001-2303. 2015.06.09. |
YOU F, WEI J C, WANG J L, et al. Research on technology of new three-phase PWM rectifier based on virtual synchronous generator[J]. Electric Welding Machine, 2015, 45(6): 34-40. DOI: 10.7512/j.issn.1001-2303.2015.06.09. | |
20 | 李佳佳, 俞兴伟, 洪挺. 适用于电动汽车充放电功能的虚拟同步机技术的研究[J]. 电测与仪表, 2021, 58(12): 39-48. DOI: 10.19753/j.issn1001-1390.2021.12.006. |
LI J J, YU X W, HONG T. Research on virtual synchronous machine technology for electric vehicle charging and discharging function[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 39-48. DOI: 10.19753/j.issn1001-1390.2021.12.006. | |
21 | MARTIMEZ D, ZAMORA R. Electrical implementations of an empirical electrolyser model for improved Matlab/Simulink simulations[J]. International Journal of Renewable Energy Research, 2019, 9(2). DOI: 10.20508/ijrer.v9i2.9368.g7678. |
22 | 钟瑞龙, 胡文, 黄泽毅. 基于改进型观测器的三相LCL型PWM整流器控制[J]. 电力电子技术, 2018, 52(5): 5-8, 12. |
ZHONG R L, HU W, HUANG Z Y. LCL-type PWM rectifier control system based on improved state observer[J]. Power Electronics, 2018, 52(5): 5-8, 12. | |
23 | XIAO H G. A modular low current ripple electrolysis power supply based on multiphase half-bridge high-frequency inverters[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10088-10096. DOI: 10.1109/TPEL.2020.2978340. |
24 | 贺明智, 谭杨, 孟鑫, 等. 兼具高可靠性、高效率的大功率电解制氢电源研究[J/OL]. 电源学报, (2023-06-19) [2024-04-02]. https://kns.cnki.net/kcms/detail/12.1420.TM.20230619.1553.010.html. |
HE M Z, TAN Y, MENG X, et al. Research on high-power hydrogen production power supply with high-reliability and high-efficiency[J/OL]. Journal of Power Supply, (2023-06-19) [2024-04-02]. https://kns.cnki.net/kcms/detail/12.1420.TM.20230619. 1553.010.html. | |
25 | 缪惠宇, 郑建勇, 顾盼盼, 等. 虚拟同步整流器的不平衡电压改进控制[J]. 电力工程技术, 2017, 36(5): 2-7. DOI: 10.19464/j.cnki.cn32-1541/tm.2017.05.002. |
MIAO H Y, ZHENG J Y, GU P P, et al. Improved control of virtual synchronous rectifier with unbalanced voltage[J]. Electric Power Engineering Technology, 2017, 36(5): 2-7. DOI: 10.19464/j.cnki.cn32-1541/tm.2017.05.002. | |
26 | 范红, 董伟杰, 白晓民, 等. 基于虚拟同步电动机技术的变频器控制策略研究[J]. 中国电机工程学报, 2017, 37(15): 4446-4453, 4586. DOI: 10.13334/j.0258-8013.pcsee.162563. |
FAN H, DONG W J, BAI X M, et al. A novel frequency-converter control strategy based on virtual synchronous motors[J]. Proceedings of the CSEE, 2017, 37(15): 4446-4453, 4586. DOI: 10.13334/j.0258-8013.pcsee.162563. | |
27 | 赵强, 张玉琼, 陈紫薇, 等. 计及储能的低惯量电力系统频率特性分析[J]. 中国电机工程学报, 2023, 43(3): 904-914. DOI: 10.13334/j.0258-8013.pcsee.221448. |
ZHAO Q, ZHANG Y Q, CHEN Z W, et al. Frequency character istic analysis of low-inertia power system considering energy storage[J]. Proceedings of the CSEE, 2023, 43(3): 904-914. DOI: 10.13334/j.0258-8013.pcsee.221448. | |
28 | 田雪沁, 冯亚杰, 袁铁江, 等.考虑电氢负荷柔性的多堆电解槽优化运行[J/OL].电网技术,1-10[2024-05-21].https://doi.org/10.13335/j.1000-3673.pst.2023.1885. |
TIAN X Q, FENG Y J, YUAN T J, et al. Optimize the operation of multi alkaline electrolyzers considering flexible electrical and hydrogen load [J/OL]. Power System Technology:1-10. [2024-05-21].https://doi.org/10.13335/j.1000-3673.pst.2023.1885. |
[1] | Shiqi GUO, Dong GUO, Guozheng SHANG, Tingting WEI, Zixuan ZHENG, Enze CHEN, Jie LI, Jiachen ZHANG. AGC control strategy incorporating energy storage cluster participation under control performance standards for interconnected grids [J]. Energy Storage Science and Technology, 2024, 13(11): 4005-4016. |
[2] | Chao XING, Jiajie XIAO, Peiqiang LI, Xinze XI, Zhiyu MAO, Qi GUO, Chunming TU. Integrated control strategy and economic evaluation of multi-type energy storage for power grid secondary frequency modulation [J]. Energy Storage Science and Technology, 2023, 12(10): 3265-3274. |
[3] | Ke DING, Guangchao GENG, Quanyuan JIANG. Collaborative optimization method for improving the frequency response characteristics of energy storage and DC systems considering multiscenario demands [J]. Energy Storage Science and Technology, 2023, 12(8): 2649-2658. |
[4] | YAO Qingcheng, YUAN Xiaoling. Optimal configuration of independent microgrid based on Monte Carlo processing of source and load uncertainty [J]. Energy Storage Science and Technology, 2020, 9(1): 186-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||