Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (6): 1003-1016.doi: 10.12028/j.issn.2095-4239.2019.0111
Previous Articles Next Articles
CHEN Xiaoxuan1, LI Sheng1, HU Yonggang1, ZHENG Shiyao1, CHAI Yunxuan1, LI Dongjiang2, ZUO Wenhua1, ZHANG Zhongru1, YANG Yong1
Received:
2019-05-02
Revised:
2019-06-10
Online:
2019-11-01
Published:
2019-11-01
CLC Number:
CHEN Xiaoxuan, LI Sheng, HU Yonggang, ZHENG Shiyao, CHAI Yunxuan, LI Dongjiang, ZUO Wenhua, ZHANG Zhongru, YANG Yong. Failure mechanism of Li1+x(NCM)1-xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016.
[1] MAKIMURA Y, OHZUKU T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries[J]. J. Power Sources, 2003, 119-121:156-160. [2] LI L, FENG C, ZHENG H, et al. Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Journal of Electronic Materials, 2014, 43(9):3508-3513. [3] MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries:Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1):196-223. [4] MANTHIRAM A, SONG B, LI W A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6:125-139. [5] ZHAO W, ZHENG J, ZOU L, et al. High voltage operation of Ni-rich NCM cathodes enabled by stable electrode/electrolyte interphases[J]. Adv. Energy Mater. 2018, 8(19):doi:10.1002/aenm.201800297. [6] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Materials, 2009, 8:320-324. [7] ZHAO X, YIN Y, HU Y, et al. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/Carbon lithium-ion batteries at subzero ambient temperatures[J]. J. Power Sources, 2019, 418:61-73. [8] LIU S, SU J, ZHAO J, et al. Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures[J]. J. Power Sources, 2018, 393:92-98. [9] CABANA J, KWON B J, HU L. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Liion batteries[J]. Acc. Chem. Res., 2018, 51(2):299-308. [10] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603. [11] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li(NixCoyMnz)O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013, 233:121-130. [12] XIA Y, ZHENG J, WANG C, et al. Designing principle for Nirich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49:434-452. [13] YAN P, ZHENG J, LV D, et al. Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials[J]. Chem. Mater., 2015, 27(15):5393-5401. [14] ABDEL-GHANY A, ZAGHIB K, GENDRON F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12):4092-4100. [15] LEE K S, MYUNG S T, AMINE K, et al. Structural and electrochemical properties of layered Li(Ni1-2xCoxMnx)O2 (x=0.1-0.3) positive electrode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2007, 154(10):A971-A977. [16] LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. J. Power Sources, 2014, 261:285-291. [17] MU L, YUAN Q, TIAN C, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials[J]. Nat. Commun., 2018, 9(1):doi:10.1038/s41467-018-05172-x. [18] DE BIASI L, KONDRAKOV A O, GEßWEIN H, et al. Between scylla and charybdis:Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries[J]. J. Phys. Chem. C, 2017, 121(47):26163-26171. [19] MILLER D J, PROFF C, WEN J G, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Adv. Energy Mater., 2013, 3(8):1098-1103. [20] RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x ≤ 0.95) cathodes for high-energydensity lithium-ion batteries:Bulk or surface degradation?[J] Chem. Mater., 2018, 30(3):1155-1163. [21] LIM J M, HWANG T, KIM D, et al. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material[J]. Sci. RepUk, 2017, 7:doi:https://doi.org/10.1038/srep39669. [22] YAN P, ZHENG J, CHEN T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode[J]. Nat. Commun., 2018, 9(1):doi:https://doi.org/10.1038/s41467-018-04862-w. [23] 李建刚, 万春荣, 杨东平, 等. LiNi3/8Co2/8Mn3/8O2正极材料氟掺杂改性研究[J]. 无机材料学报, 2004, 19(6):1298-1306. LI J G, WAN C R, YANG D P, et al. Fluorine doping of LiNi3/8Co2/8Mn3/8O2 cathode material for lithium-ion batteries[J]. Journal of Inorganic Material, 2004, 19(6):1298-1306. [24] 唐爱东, 王海燕, 黄可龙, 等. 锂离子电池正极材料层状Li-Ni-CoMn-O的研究[J]. 化学进展, 2007, 19(9):1313-1321. TANG A D, WANG H Y, HUANG K L, et al. Layered L-in-Co-Mn-O as cathode materials for lithium ion battery[J]. Progress in Chemistry, 2007, 19(9):1313-1321. [25] LIU K, LIU Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Sci. Adv., 2018, 4(6):9820-9831. [26] KONDRAKOV A O, GEßWEIN H, GALDINA K, et al. Chargetransfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation[J]. J. Phys. Chem. C, 2017, 121(44):24381-24388. [27] ZHENG S, HONG C, GUAN X, et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. J. Power Sources, 2019, 412:336-343. [28] LEE W, MUHAMMAD S, KIM T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Adv. Energy Mater., 2018, 8(4):doi:https://doi.org/10.1002/aenm.201701788. [29] LIU H, LIU H, LAPIDUS S H, et al. Sensitivity and limitations of structures from X-ray and neutron-based diffraction analyses of transition metal oxide lithium-battery electrodes[J]. J. Electrochem. Soc., 2017, 164(9):A1802-A1811. [30] HAUSBRAND R, CHERKASHIN G, EHRENBERG H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials:Methodology, insights and novel approaches[J]. Materials Science and Engineering:B, 2015, 192:3-25. [31] HOELZEL M, SENYSHYN A, GILLES R, et al. Scientific review:The structure powder diffractometer SPODI[J]. Neutron News, 2007, 18(4):23-26. [32] KINO K, YONEMURA M, ISHIKAWA Y, et al. Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery[J]. Solid State Ionics, 2016, 288:257-261. [33] XIA S, MU L, XU Z, et al. Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries[J]. Nano Energy, 2018, 53:753-762. [34] BORODIN O, BEHL W, JOW T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphatebased electrolytes[J]. J. Phys. Chem. C, 2013, 117(17):8661-8682. [35] MOAHNTY D, DAHLBERG K, KING D M, et al. Modification of Ni-rich FCG NCM and NCA cathodes by atomic layer deposition:Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Sci. Rep., 2016, 6:doi:https://doi.org/10.1038/srep26532. [36] JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1):doi:https://doi.org/10.1002/aenm.201300787. [37] ALVA G, KIM C, YI T, et al. Surface chemistry consequences of Mgbased coatings on LiNi0.5Mn1.5O4 electrode materials upon operation at high voltage[J]. J. Phys. Chem. C, 2014, 118(20):10596-10605. [38] HAN J G, KIM K, LEE Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Adv. Mater., 2018, doi:https://doi.org/10.1002/adma.201804822. [39] SONG Y M, HAN J G, PARK S, et al. A multifunctional phosphitecontaining electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance[J]. J. Mater. Chem., A 2014, 2(25):9506-9513. [40] CHOI N S, YEON J T, LEE Y W, et al. Degradation of spinel lithium manganese oxides by low oxidation durability of LiPF6-based electrolyte at 60℃[J]. Solid State Ionics, 2012, 219:41-48. [41] HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Appl. Mater Interfaces, 2015, 7(15):8319-8129. [42] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transitionmetal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Ed. Engl, 2015, 54(15):4440-4457. [43] ANDERSSON A M, ABRAHAM D P, HAASCH R, et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. J. Electrochem. Soc., 2002, 149(10):A1358-A1369. [44] YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nat. Energy, 2018, 3(7):600-605. [45] MU L, LIN R, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Lett., 2018, 18(5):3241-3249. [46] LIU H, WOLF M, KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J]. Nano Lett., 2017, 17(6):3452-3457. [47] ZHENG J, LIU T, HU Z, et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2[J]. J. Am. Chem. Soc., 2016, 138(40):13326-13334. [48] PIECZINKA N P, LIU Z Y, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. J. Phys. Chem., C 2013, 117(31):15947-15957. [49] WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. J. Power Sources, 2014, 258:210-217. [50] ZHAN C, LU J, JEREMY K A, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems[J]. Nat. Commun., 2013, 4:doi:https://doi.org/10.1038/ncomms3437. [51] GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. J. Electrochem. Soc., 2017, 164(2):A389-A399. [52] LEUNG K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4(100) surfaces[J]. J. Phys. Chem. C, 2012, 116(18):9852-9861. [53] DELACOURT C, KWONG A, LIU X, et al. Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries[J]. J. Electrochem. Soc., 2013, 160(8):A1099-A1107. [54] LI W, LIU X, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries:A comprehensive evaluation on long-term cyclability[J]. Adv. Energy Mater., 2018, 8(15):doi:https://doi.org/10.1002/aenm.201703154. [55] OCHIDA M, DOMI Y, DOI T, et al. Influence of manganese dissolution on the degradation of surface films on edge plane graphite negative-electrodes in lithium-ion batteries[J]. J. Electrochem. Soc., 2012, 159(7):A961-A966. [56] ZHAN C, WU T, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-A critical review[J]. Energy & Environ. Sci., 2018, 11(2):243-257. [57] CHEN Y, ZHANG Y, CHEN B, et al. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating[J]. J. Power Sources, 2014, 256:20-27. [58] JU S H, KANG I S, LEE Y S, et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dualconductive polymer coating[J]. ACS Appl. Mater. Interfaces, 2014, 6(4):2546-2552. [59] PARK J S, MENG X, ELAM J W, et al. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries[J]. Chemistry of Materials, 2014, 26(10):3128-3134. [60] XIONG L, XU Y, TAO T, et al. Double roles of aluminum ion on surface-modified spinel LiMn1.97Ti0.03O4[J]. Journal of Materials Chemistry, 2011, 21(13):4937-4944. [61] LI J, BAGGWTTO L, MARTHA S K, et al. An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O45 V cathode with conventional electrolytes[J]. Adv. Energy Mater., 2013, 3(10):1275-1278. [62] LIU W, LI X, XIONG D, et al. Significantly improving cycling performance of cathodes in lithium ion batteries:The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44:111-120. [63] PARK J S, MENG X, ELAM J W, et al. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries[J]. Chem. Mater., 2014, 26(10):3128-3134. [64] BOLLOLI M, KALHOFF J, ALLOIN F, et al. Fluorinated carbamates as suitable solvents for LiTFSI-based lithium-ion electrolytes:Physicochemical properties and electrochemical characterization[J]. J. Phys. Chem. C, 2015, 119(39):22404-22414. [65] LIU J, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative-A promising electrolyte additive for high voltage lithium ion batteries:From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46:404-414. [66] ZHANG Z, HU L, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy Environ. Sci., 2013, 6(6):1806-1810. [67] HE M, SU C C, FENG Z, et al. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte[J]. Adv. Energy Mater., 2017, 7(15):doi:https://doi.org/10.1002/aenm.201700109. [68] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2):1379-1394. [69] YIM T, KANG K S, MUN J, et al. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials[J]. J. Power Sources, 2016, 302:431-438. [70] LEE Y S, LEE K S, SUN Y K, et al. Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode[J]. J. Power Sources, 2011, 196(16):6997-7001. [71] XIA L, XIA Y, LIU Z. Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries[J]. Electrochim. Acta, 2015, 151:429-436. [72] XU M, LI W, LUCHT B L. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithiumion batteries[J]. J. Power Sources, 2009, 193(2):804-809. [73] ZUO X, FAN C, XIAO X, et al. High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive[J]. J. Power Sources, 2012, 219:94-99. [74] LI B, WANG Y, RONG H, et al. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery[J]. J. Mater. Chem. A, 2013, 1(41):12954-12961. [75] MA X, HARLOW J E, LI J, et al. Editors' choice-Hindering rollover failure of Li(Ni0.5Mn0.3Co0.2)O2/graphite pouch cells during long-term cycling[J]. J. Electrochem. Soc., 2019, 166(4):A711-A724. [76] BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. J. Electrochem. Soc., 2013, 160(10):A1668-A1674. [77] LI D, DANILOV D L, GAO L, et al. Degradation mechanisms of C6/LiFePO4 batteries:Experimental Analyses of cycling-induced aging[J]. Electrochimica Acta, 2016, 210:445-455. [78] LI D, LI H, DANILOV D L, et al. Degradation mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 Li-ion batteries unraveled by non-destructive and post-mortem methods[J]. J. Power Sources, 2019, 416:163-174. [79] ZHANG Q, WHITE R E. Capacity fade analysis of a lithium ion cell[J]. J. Power Sources, 2008, 179(2):793-798. [80] LI X, KANG J, YANG Y, et al. A study on capacity and power fading characteristics of Li(Ni1/3Co1/3Mn1/3)O2-based lithium-ion batteries[J]. Ionics, 2016, 22(11):2027-2036. [81] BLOOM I, POTTER B G, JOHNSON C S, et al. Effect of cathode composition on impedance rise in high-power lithium-ion cells:Longterm aging results[J]. J. Power Sources, 2006, 155(2):415-419. [82] ANSEÁN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries:A mechanistic analysis of aging[J]. J. Power Sources, 2016, 321:201-209. [83] DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. J. Power Sources, 2012, 219:204-216. [84] AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials (Basel), 2013, 6(4):1310-1325. [85] De HOOG J, TIMMERMANS J M, IOAN-STROE D, et al. Combined cycling and calendar capacity fade modeling of a nickel-manganesecobalt oxide cell with real-life profile validation[J]. Applied Energy, 2017, 200:47-61. [86] CHRISTENSEN J. Modeling diffusion-induced stress in Li-ion cells with porous electrodes[J]. J. Electrochem. Soc., 2010, 157(3):A366-A380. [87] BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J. Power Sources, 2013, 241:680-689. [88] SCHMALSTIEG J, KäBITZ S, ECKER M, et al. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries[J]. J. Power Sources, 2014, 257:325-334. [89] PETIT M, PRADA E, SAUVANT-MOYNOT V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime[J]. Applied Energy, 2016, 172:398-407. [90] HUGGINS R A. Advanced batteries:Materials science aspects, chapter 15:57 Solid Electrolytes[M]. Germany:Springer, 2009:339-372. [91] ZHENG L, ZHU J, LU D D, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150:759-769. [92] ZHENG L, ZHU J, WANG G, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158:1028-1037. [93] LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. J. Power Sources, 2018, 373:40-53. [94] KOSTIANTYN T. Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559:467-469. |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[3] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[4] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[5] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[6] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[7] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[8] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[9] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[10] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[11] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[12] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[13] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[14] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[15] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||