Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 353-360.doi: 10.19799/j.cnki.2095-4239.2019.0222
Previous Articles Next Articles
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping()
Received:
2019-10-07
Revised:
2019-11-01
Online:
2020-03-05
Published:
2019-11-11
Contact:
Liping WANG
E-mail:lipingwang@uestc.edu.cn
CLC Number:
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Fig.2
Charge/discharge curves of β-Li0.3V2O5 between (a) 2.2~4.0 V and (b) 1.5~4.0 V (0.5C); (c) Charge/discharge curves of V2O5 between 1.5~4.0 V (0.5C); (d) Cycling performance of β-Li0.3V2O5 between 1.5~4.0 V, 2.2~4.0 V and V2O5 between 1.5~4.0 V; (e) Rate charge/discharge curves of β-Li0.3V2O5 between 2.2~4.0 V; (f) Rate performance of β-Li0.3V2O5 "
1 | CHOI J W , AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
2 | NITTA N , WU F , LEE J T, et al . Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264. |
3 | SCROSATI B , HASSOUN J , SUN Y K . Lithium-ion batteries: A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287-3295. |
4 | WU H , CUI Y . Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
5 | ZHAO Y , WEI K , WU H , et al . LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode[J]. ACS Nano, 2019, 13(2): 2490-2500. |
6 | WANG L , WU Z , ZOU J , et al . Li-free cathode materials for high energy density lithium batteries[J]. Joule, 2019, 3(9): 2086-2102. |
7 | HU J , ZHANG Y , CAO D , et al . Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 16166-16174. |
8 | LI C , CHEN K , ZHOU X , et al . Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices[J]. NPJ Computational Materials, 2018, 4(1): 22-37. |
9 | ZU C X , LI H . Thermodynamic analysis on energy densities of batteries [J]. Energy & Environmental Science, 2011, 4(8): 2614-2624. |
10 | CHRISTENSEN C K , RENSEN D R S , HVAM J , et al . Structural evolution of disordered Li x V2O5 bronzes in V2O5 cathodes for Li-ion batteries[J]. Chemistry of Materials, 2018, 31(2): 512-520. |
11 | WU C , XIE Y . Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving[J]. Energy & Environmental Science, 2010, 3(9): 1191-1206. |
12 | COCCIANTELLI J M , DOUMERC J P , POUCHARD M , et al . Crystal chemistry of electrochemically inserted Li x V2O5 [J]. Journal of Power Sources, 1991, 34(2): 103-111. |
13 | ASL N M, KIM J H , LEE W C, et al . A new chemical route for the synthesis of β′-Li x V2O5 for use as a high performance cathode[J]. Electrochimica Acta, 2013, 105: 403-411. |
14 | LI W D , XU C Y , DU Y , et al . Electrochemical lithium insertion behavior ofβ-Li x V2O5 (0 <x≤ 3) as the cathode material for secondary lithium batteries[J]. Journal of The Electrochemical Society, 2013, 161(1): A75-A83. |
15 | LI W D , XU C Y , PAN X L , et al . High capacity and enhanced structural reversibility ofβ-Li x V2O5 nanorods as the lithium battery cathode[J]. Journal of Materials Chemistry A, 2013, 1(17): 5361-5369. |
16 | DELMAS C , COGNAC AURADOU H , COCCIANTELLI J M , et al . The Li x V2O5 system: An overview of the structure modifications induced by the lithium intercalation[J]. Solid State Ionics, 1994, 69(3-4): 257-264. |
17 | GALY J . Vanadium pentoxide and vanadium oxide bronzes-Structural chemistry of single (S) and double (D) layer M x V2O5 phases[J]. Journal of Solid State Chemistry, 1992, 100(2): 229-245. |
18 | JIANG J , WANG Z , CHEN L . Structural and electrochemical studies on β-Li x V2O5 as cathode material for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2007, 111(28): 10707-10711. |
19 | WEST K , ZACHAU-CHRISTIANSEN B , JACOBSEN T , et al . Lithium insertion into vanadium pentoxide bronzes[J]. Solid State Ionics, 1995, 76(1): 15-21. |
20 | RAISTRICK I D , HUGGINS R A . An electrochemical study of the mixed beta-vanadium bronzes Li y Na x V2O5 and Li y K x V2O5 [J]. Materials Research Bulletin, 1983, 18(3): 337-346. |
21 | BADDOUR-HADJEAN R , BACH S , EMERY N , et al . The peculiar structural behaviour of β-Na0.33V2O5 upon electrochemical lithium insertion[J]. Journal of Materials Chemistry, 2011, 21(30): 11296-11305. |
22 | SEO I, HWANG G C , KIM J K , et al . Electrochemical characterization of micro-rod β-Na0.33V2O5 for high performance lithium ion batteries [J]. Electrochimica Acta, 2016, 193: 160-165. |
23 | MA Y , ZHOU H , ZHANG S , et al . Long straczekite δ-Ca0.24V2O5 ·H2O nanorods and its derived β-Ca0.24V2O5 nanorods as novel host materials for lithium storage with excellent cycling stability[J]. Chemistry - A European Journal, 2017, 23(53): 13221-13232. |
24 | LIAW B Y , RAISTRICK I D , HUGGINS R A . Thermodynamic and structural considerations of insertion reactions in lithium vanadium bronze structures[J]. Solid State Ionics, 1991, 45(3-4): 323-328. |
25 | WANG P P , XU C Y , LI W D , et al . Low temperature electrochemical performance of β-LiV2O5 cathode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 169: 440-446. |
26 | HARDY A , GALY J , CASALOT A , et al . Sur les bronzes de vanadium de formule M x V2O5 [J]. Elsevier France-Edition Scientifiques Medicales Elsevier, 1965, (4): 1056. |
27 | ENJALBERT R , GALY J . A refinement of the structure of V2O5 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42(11): 1467-1469. |
28 | BHAISWAR J , SALUNKHE M , DONGRE S . Synthesis, characterization and thermal, electrical study of CdS-polyaniline nanocomposite via oxidation polymerization[J]. International Journal of Scientific and Research Publications, 2013, 3(1): 1-4. |
29 | SHEMIRANI M , SAGHIR M . Three dimensional modeling of Ge0.98Si0.02 crystal growth conducted on board FOTON-M2 in the presence of rotating magnetic field[J]. FDMP: Fluid Dynamics & Materials Processing, 2009, 5(3): 211-230. |
30 | CHAKRABARTI A , HERMANN K , DRUZINIC R , et al . Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study[J]. Physical Review B, 1999, 59(16): 10583-10591. |
31 | KONAROVA M , TANIGUCHI I . Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries [J]. Journal of Power Sources, 2010, 195(11): 3661-3667. |
32 | TABERNA P L , MITRA S , POIZOT P , et al . High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573. |
33 | YOUSAF M , WANG Y , CHEN Y , et al . A 3D Trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage[J]. Advanced Energy Materials, 2019, 9(30): 1900567-1900578. |
34 | CAO D , YAO Z , LIU J , et al . H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries[J]. Energy Storage Materials, 2018, (11): 152-160. |
35 | AN S J , LI J , DANIEL C , et al . The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. |
36 | KAO Y H, TANG M , MEETHONG N , et al . Overpotential-dependent phase transformation pathways in lithium iron phosphate battery electrodes[J]. Chemistry of Materials, 2010, 22(21): 5845-5855. |
37 | FAN L , MA R , ZHANG Q , et al . Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie, 2019, 58(31): 10500-10505. |
38 | GALY J , DARRIET J , CASALOT A , et al . Structure of the M x V2O5-βand M x V2- y T y O5-β phases[J]. Journal of Solid State Chemistry, 1970, 1(3-4): 339-348. |
39 | DICKENS P G , FRENCH S J , HIGHT A T , et al . Phase relationships in the ambient temperature Li x V2O5 system (0.1<x<1.0)[J]. Materials Research Bulletin, 1979, 14(10): 1295-1299. |
[1] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[2] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[3] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[4] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[5] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[6] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[7] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[8] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[9] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[10] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[11] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[12] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[13] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[14] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[15] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||