Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 551-568.doi: 10.19799/j.cnki.2095-4239.2019.0252
Previous Articles Next Articles
ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing
Received:
2019-11-05
Revised:
2019-11-20
Online:
2020-03-05
Published:
2019-11-20
Contact:
Yongbing TANG
CLC Number:
ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 551-568.
1 | WU H B , LOU X W . Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J]. Sci. Adv., 2017, 3: 9252. |
2 | DUNN B , KAMATH H , TARASCON J M . Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334: 928-935. |
3 | SCHMUCH R , WAGNER R , HORPEL G , et al . Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nat. Energy, 2018, 3: 267-278. |
4 | ALBERTUS P , BABINEC S , LITZELMAN S , et al . Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat. Energy, 2018, 3: 16-21. |
5 | ASSAT G , TARASCON J M . Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nat. Energy, 2018, 3: 373-386. |
6 | YANG S , ZHANG F , DING H , et al . Lithium metal extraction from seawater[J]. Joule, 2018, 2: 1648-1651. |
7 | OZAWA K . Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J]. Solid State Ionics, 1994, 69: 212-221. |
8 | CHEN X , LI H R , SHEN X , et al . The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angew. Chem. Int. Ed., 2018, 130: 16885-16889. |
9 | TURCHENIUK K , BONDAREV D , SINGHAL V , et al . Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559: 467-470. |
10 | SEEL J , DAHN J . Electrochemical intercalation of PF6 into graphite[J]. J. Electrochem. Soc., 2000, 147: 892-898. |
11 | PLACKE T , FROMM O , LUX S F, et al . Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-Ion cells[J]. J. Electrochem. Soc., 2012, 159: A1755-A1765. |
12 | ZHOU X , LIU Q , JIANG C , et al . Beyond conventional batteries: strategies towards low-cost dual-ion batteries with high performance[J]. Angew. Chem. Int. Ed., 2019. |
13 | YABUUCHI N , KUBOTA K , DAHBI M , et al . Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114: 11636-11682. |
14 | BENSON T R , COBLE M A , RYTUBA J J , et al . Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nat. Commun., 2017, 8: 207. |
15 | HOU H S , QIU X Q , WEI W F , et al . Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy Mater., 2017, 7: 1602898. |
16 | BERTHELOT R , CARLIER D , DELMAS C . Electrochemical investigation of the P2-Na x CoO2 phase diagram[J]. Nat. Mater., 2011, 10: 74-80. |
17 | YANG X M , ZHANG J L , WANG Z G , et al . Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries[J]. Small, 2018, 14: 1702669. |
18 | EFTEKHARI A , JIAN Z L , JI X L . Potassium secondary batteries[J]. ACS. Appl. Mater. Interfaces, 2017, 9: 4404-4419. |
19 | XUE L G , LI Y T , GAO H C , et al . Low-cost high-energy potassium cathode[J]. J. Am. Chem. Soc., 2017, 139: 2164-2167. |
20 | JI X L , LEE K T, NAZAR L F . A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8: 500-506. |
21 | LIU X , HUANG J Q , ZHANG Q , et al . Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29: 1601759. |
22 | FANG R P , ZHAO S Y , SUN Z H , et al . More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29:1606823. |
23 | LYU Z Y, ZHOU Y , DAI W R , et al . Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries[J]. Chem. Soc. Rev., 2017, 46: 6046-6072. |
24 | ZHANG P , ZHAO Y , ZHANG X B . Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries[J]. Chem. Soc. Rev., 2018, 47: 2921-3004. |
25 | LI Y G , DAI H J . Recent advances in zinc-air batteries[J]. Chem. Soc. Rev., 2014, 43: 5257-5275. |
26 | NIU W H , PAKHIRA S , MARCUS K , et al . Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc-air battery[J]. Adv. Energy Mater., 2018, 8: 1800480 |
27 | WANG M , TANG Y B . A review on the features and progress of dual-ion batteries[J]. Adv. Energy Mater., 2018, 8: 1703320. |
28 | ZHANG X L , TANG Y B , ZHANG F , et al . A novel aluminum-graphite dual-ion battery[J]. Adv. Energy Mater., 2016, 6: 1502588. |
29 | WANG M , JIANG C , ZHANG S , et al . Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nat. Chem., 2018, 10: 667-672. |
30 | SHENG M H , ZHANG F , JI B F , et al . A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Adv. Energy Mater., 2017, 7: 1601963. |
31 | ZHANG M , SONG X , OU X, et al . Rechargeable batteries based on anion intercalation graphite cathodes[J]. Energy Storage Mater., 2019, 16: 65-84. |
32 | READ J A , CRESCE A V , ERVIN M H , et al . Dual-graphite chemistry enabled by a high voltage electrolyte[J]. Energy Environ. Sci., 2014, 7: 617-620. |
33 | PLACKE T , HECKMANN A , SCHMUCH R , et al . Perspective on performance, cost, and technical challenges for practical dual-ion batteries[J]. Joule, 2018, 2: 1-23. |
34 | YANG C , CHEN J , JI X , et al . Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569: 245-250. |
35 | WU X , XU Y , ZHANG C , et al . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. J. Am. Chem. Soc., 2019, 141: 6338-6344. |
36 | JI B , ZHANG F , SONG X , et al . A novel potassium-ion-based dual-ion battery[J]. Adv. Mater., 2017, 29: 1700519. |
37 | MIYOSHI S , AKBAY T , KURIHARA T , et al . Fast diffusivity of PF6 – anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property[J]. J. Phys. Chem. C, 2016, 120: 22887-22894. |
38 | HECKMANN A , THIENENKAMP J , BELTROP K , et al . Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes[J]. Electrochim. Acta, 2018, 260: 514-525. |
39 | RüDORFF W , HOFMANN U . Über graphitsalze[J]. Z. Anorg. Allg. Chem., 1938, 238: 1-50. |
40 | DAHN J , SEEL J . Energy and capacity projections for practical dual‐graphite cells[J]. J. Electrochem. Soc., 2000, 147: 899-901. |
41 | PLACKE T , SCHMUELLING G , KLOEPSCH R , et al . In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications[J]. Z. Anorg. Allg. Chem., 2014, 640: 1996-2006. |
42 | ROTHERMEL S , MEISTER P , SCHMUELLING G , et al . Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte[J]. Energy Environ. Sci., 2014, 7: 3412-3423. |
43 | LIN M C , GONG M , LU B , et al . An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520: 325-328. |
44 | FAN L , LIU Q , CHEN S , et al . Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017, 13: 1701011. |
45 | CHEN G , ZHANG F , ZHOU Z , et al . A flexible dual‐Ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability[J]. Adv. Energy Mater., 2018, 8: 1801219. |
46 | ZABEL H , SOLIN S A , HWANG D M . Graphite intercalation compounds I : structure and dynamics [M]. New York: Springer-Verlag, 1990. |
47 | INAGAKI M . Applications of graphite-intercalation compounds[J]. J. Mater. Res., 1989, 4: 1560-1568. |
48 | MCCULLOUGH F P , BEALE A F . Electrode for use in secondary electrical energy storage devices—Avoids any substantial change in dimension during repeated electrical charge and discharge cycles: US4865931-A[P]. 1989. |
49 | CARLIN R T , HUGH C , FULLER J , et al . Dual intercalating molten electrolyte batteries[J]. J. Electrochem. Soc., 1994, 141: L73-L76. |
50 | ZHANG E , CAO W , WANG B , et al . A novel aluminum dual-ion battery[J]. Energy Storage Mater., 2018, 11: 91-99. |
51 | SANTHANAM R , NOEL M . Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system[J]. J. Power Sources, 1995, 56: 101-105. |
52 | ÖZMEN-MONKUL B , LERNER M M . The first graphite intercalation compounds containing tris-(pentafluoroethyl)-trifluorophosphate[J]. Carbon., 2010., 48: 3205-3210. |
53 | WANG S , JIAO S , SONG WL , et al . A novel dual-graphite aluminum-ion battery[J]. Energy Storage Mater., 2018, 12: 119-127. |
54 | ZHANG Z , HU X , ZHOU Y , et al . Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry[J]. J. Mater. Chem. A, 2018, 6: 8244-8250. |
55 | SANTHANAM R , NOEL M . Effect of solvents on the intercalation/de-intercalation behaviour of monovalent ionic species from non-aqueous solvents on polypropylene-graphite composite electrode[J]. J. Power Sources, 1997, 66: 47-54. |
56 | MäRKLE W , TRAN N , GOERS D , et al . The influence of electrolyte and graphite type on the PF6 - intercalation behaviour at high potentials[J]. Carbon, 2009, 47: 2727-2732. |
57 | JI B , ZHANG F , WU N , et al . A dual‐carbon battery based on potassium‐ion electrolyte[J]. Adv. Energy Mater., 2017, 7:1700920. |
58 | WU X , XU Y , ZHANG C , et al . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. J. Am. Chem. Soc., 2019, 141: 6338-6344. |
59 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104: 4303-4418. |
60 | QUARTARONE E , MUSTARELLI P . Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chem. Soc. Rev., 2011, 40: 2525-2540. |
61 | XU K . Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114: 11503-11618. |
62 | GOODENOUGH J B . Evolution of strategies for modern rechargeable batteries[J]. Acc. Chem. Res., 2012, 46: 1053-1061. |
63 | GAO J , YOSHIO M , QI L , et al . Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode[J]. J. Power Sources, 2015, 278: 452-457. |
64 | GAO J , TIAN S , QI L , et al . Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors[J]. J. Power Sources, 2015, 297: 121-126. |
65 | MäRKLE W , COLIN JF , GOERS D , et al . In situ X-ray diffraction study of different graphites in a propylene carbonate based electrolyte at very positive potentials[J]. Electrochim. Acta., 2010, 55: 4964-4969. |
66 | HAYES R , WARR G G , R ATKIN et al . Structure and nanostructure in ionic liquids[J]. Chem. Rev., 2015, 115: 6357-6426. |
67 | XIANG J , WU F , CHEN R , et al . High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries[J]. J. Power Sources, 2013, 233: 115-120. |
68 | SUTTO T E , DUNCAN T T , WONG T C . X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids[J]. Electrochim. Acta., 2009, 54: 5648-5655. |
69 | MEISTER P , SIOZIOS V , REITER J , et al . Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite[J]. Electrochim. Acta., 2014, 130: 625-633. |
70 | MEISTER P , SCHMUELLING G , WINTER M , et al . New insights into the uptake/release of FTFSI-anions into graphite by means of in situ powder X-ray diffraction[J]. Electrochem. Commun., 2016, 71: 52-55. |
71 | BELTROP K , MEISTER P , KLEIN S , et al . Does Size really matter ? new insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries[J]. Electrochim. Acta., 2016, 209: 44-55. |
72 | YANG Q , ZHANG Z , SUN X G , et al . Ionic liquids and derived materials for lithium and sodium batteries[J]. Chem. Soc. Rev., 2018, 47: 2020-2064. |
73 | NOEL M , SANTHANAM R . Electrochemistry of graphite intercalation compounds[J]. J. Power Sources, 1998, 72: 53-65. |
74 | SCHMUELLING G , PLACKE T , KLOEPSCH R , et al . X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells[J]. J. Power Sources, 2013, 239: 563-571. |
75 | BALABAJEW M , REINHARDT H , BOCK N , et al . In-situ raman study of the intercalation of bis(trifluoromethylsulfonyl)imid ions into graphite inside a dual-ion cell[J]. Electrochim. Acta., 2016, 211: 679-688. |
76 | ISHIHARA T , YOKOYAMA Y , KOZONO F ,et al . Intercalation of PF6 - anion into graphitic carbon with nano pore for dual carbon cell with high capacity[J]. J. Power Sources, 2011, 196: 6956-6959. |
77 | ANGELL M , PAN C J , RONG Y , et al . High coulombic efficiency aluminum-ion battery using an AlCl3 - urea ionic liquid analog electrolyte[J]. Proc. Nat. Acad. Sci. USA, 2017, 114: 834-839. |
78 | PLACKE T , ROTHERMEL S , FROMM O , et al . Influence of graphite characteristics on the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into a graphite-based cathode[J]. J. Electrochem. Soc., 2013, 160: A1979-A1991. |
79 | GAO J C , TIAN S F , QI L , et al . Intercalation manners of perchlorate anion into graphite electrode from organic solutions[J]. Electrochim. Acta, 2015, 176: 22-27. |
80 | BELTROP K , QI X , HERING T , et al . Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries[J]. J. Power Sources, 2018, 373: 193-202. |
81 | CARLIN R T , DELONG H C , FULLER J , et al . Dual intercalating molten electrolyte batteries[J]. J. Electrochem. Soc., 1995, 393: L73-L76. |
82 | LI Z , LIU J , LI J , et al . Graphite cathode and anode becoming graphene structures after cycling based on graphite-based dual ion battery using PP14 NTF2[J]. Carbon, 2018, 138: 52-60. |
83 | READ J A . In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent[J]. J. Phys. Chem. C, 2015, 119: 8438-8446. |
84 | LI N , XIN Y , CHEN H , et al . Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation[J]. J. Energy Chem., 2018, 29: 122-128. |
85 | WANG S , JIAO S , TIAN D , et al . A novel ultrafast rechargeable multi-ions battery[J]. Adv. Mater., 2017, 29:1606349. |
86 | TANG Y , ZHANG Y , LI W , et al . Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chem. Soc. Rev., 2015, 44: 5926-5940. |
87 | WU Y , GONG M , LIN M C , et al . 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery[J]. Adv. Mater., 2016, 28: 9218-9222. |
88 | JUNG S C , KANG Y J , YOO D J, et al . Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery[J]. J. Phys. Chem. C, 2016, 120: 13384-13389. |
89 | YU X , WANG B , GONG D , et al . Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries[J]. Adv. Mater., 2017, 29:1604118. |
90 | CHEN H , GUO F , LIU Y , et al . A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Adv. Mater., 2017, 29: 1605958. |
91 | YANG Y , LIU X , ZHU Z , et al . The role of geometric sites in 2D materials for energy storage[J]. Joule, 2018, 2: 1075-1094. |
92 | CHEN S , WANG J , FAN L , et al . An ultrafast rechargeable hybrid sodium‐based dual‐ion capacitor based on hard carbon cathodes[J]. Adv. Energy Mater., 2018, 8:1800140. |
93 | RODRIGUEZ-PéREZ I A , JIAN Z , WALDENMAIER P K ,et al . A hydrocarbon cathode for dual-ion batteries[J]. ACS Energy Lett., 2016, 1: 719-723. |
94 | FAN L , LIU Q , XU Z , et al . An organic cathode for potassium dual-ion full battery[J]. ACS Energy Lett., 2017, 2: 1614-1620. |
95 | SCHON T B , MCALLISTER B T , LI P F , et al . The rise of organic electrode materials for energy storage[J]. Chem. Soc. Rev., 2016, 45: 6345-6404. |
96 | SONG Z , ZHOU H . Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Enrgy Environ. Sci., 2013, 6: 2280-2301. |
97 | CAO X , TAN C , SINDORO M , et al . Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017, 46: 2660-2677. |
98 | REYNIER Y , YAZAMI R , FULTZ B . The entropy and enthalpy of lithium intercalation into graphite[J]. J. Power Sources, 2003, 119-121: 850-855. |
99 | PANDE V , VISWANATHAN V . Thermodynamics of lithium intercalation into graphite studied using density functional theory calculations incorporating van der Waals correlation and uncertainty estimation[J]. arXiv. preprint. arXiv: 1607.05658, 2016. |
100 | DAHN J R . Phase diagram of Li x C6 [J]. Phys. Rev. B, 1991, 44: 9170-9177. |
101 | OHZUKU T , IWAKOSHI Y , SAWAI K . Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. J. Electrochem. Soc., 1993, 140: 2490-2498. |
102 | PALACIN M R . Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chem. Soc. Rev., 2009, 38: 2565-2575. |
103 | ZHANG W J . Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196: 877-885. |
104 | MEISTER P , FROMM O , ROTHERMEL S , et al . Sodium-based vs. lithium-based dual-ion cells:Eelectrochemical study of anion intercalation/de-intercalation into/from graphite and metal plating/dissolution behavior[J]. Electrochim. Acta, 2017, 228: 18-27. |
105 | JIANG C , FANG Y , LANG J , et al . Integrated configuration design for ultrafast rechargeable dual-ion battery[J]. Adv. Energy Mater., 2017, 7: 1700913. |
106 | QIN P , WANG M , LI N , et al . Bubble‐sheet‐like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries[J]. Adv. Mater., 2017, 29: 1606805. |
107 | TONG X , ZHANG F , JI B , et al . Carbon-coated porous aluminum foil anode for high‐tate, long-term cycling stability, and high energy density dual‐ion batteries[J]. Adv. Mater., 2016, 28: 9979-9985. |
108 | LIU Y , HUDAK N S , HUBER D L , et al . In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles[J]. Nano Lett., 2011, 11: 4188-4194. |
109 | MCALISTER A . The Al-Li (aluminum-lithium) system[J]. Bull. Alloy Phase Diagr., 1982, 3: 177-183. |
110 | WEN C J , BOUKAMP B A , HUGGINS R A , et al . Thermodynamic and mass-transport properties of LiAl[J]. J. Electrochem. Soc., 1979, 126: 2258-2266. |
111 | HAMON Y , BROUSSE T , JOUSSE F , et al . Aluminum negative electrode in lithium ion batteries[J]. J. Power Sources, 2001, 97: 185-187. |
112 | KUKSENKO S P . Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters[J]. Russ. J. Electrochem., 2013, 49: 67-75. |
113 | POLLAK E , LUCAS I T , KOSTECKI R . A study of lithium transport in aluminum membranes[J]. Electrochem. Commun., 2010, 12: 198-201. |
114 | JOW T R, LIANG C C . Lithium-aluminum electrodes at ambient-temperatures[J]. J. Electrochem. Soc., 1982, 129: 1429-1434. |
115 | KUMAGAI N , KIKUCHI Y , TANNO K , et al . Electrochemical investigation of the diffusion of lithium in β-LiAl alloy at room temperature[J]. J. Appl. Electrochem., 1992, 22: 728-732. |
116 | HUME-ROTHERY W . CXXV—The system sodium-tin[J]. J. Chem. Soc., 1928: 947-963. |
117 | CROUCHBAKER S , DEUBLEIN G , TSAI H C , et al . Materials considerations related to sodium-based rechargeable cells for use above room-temperature[J]. Solid State Ionics, 1990, 42: 109-115. |
118 | CHEVRIER V L , CEDER G . Challenges for Na-ion negative electrodes[J]. J. Electrochem. Soc., 2011, 158. |
119 | ELLIS L D , HATCHARD T D , OBROVAC M N . Reversible insertion of sodium in tin[J]. J. Electrochem. Soc., 2012, 159: A1801-A1805. |
120 | KOMABA S , MATSUURA Y , ISHIKAWA T , et al . Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell[J]. Electrochem. Commun., 2012, 21: 65-68. |
121 | BAGGETTO L , GANESH P , MEISNER R P , et al . Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory[J]. J. Power Sources, 2013, 234: 48-59. |
122 | SANGSTER J , BALE C W . The K-Sn (potassium-tin) system[J]. J. Phase Equilib., 1998, 19: 67-69. |
123 | SULTANA I , RAMIREDDY T , RAHMAN M M , et al . Tin-based composite anodes for potassium-ion batteries[J]. Chem. Commun., 2016, 52: 9279-9282. |
124 | RAMIREDDY T , KALI R , JANGID M K , et al . Insights into electrochemical behavior, phase evolution and stability of sn upon K-alloying/de-alloying via in situ studies[J]. J. Electrochem. Soc., 2017, 164: A2360-A2367. |
125 | ZHANG W , MAO J , LI S , et al . Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. J. Am. Chem. Soc., 2017, 139: 3316-3319. |
126 | OHNO M , KOZLOV A , ARROYAVE R , et al . Thermodynamic modeling of the Ca-Sn system based on finite temperature quantities from first-principles and experiment[J]. Acta Mater., 2006, 54: 4939-4951. |
127 | LIPSON A L , PAN B , LAPIDUS S H , et al . Rechargeable Ca-ion batteries: A new energy storage system[J]. Chem. Mater., 2015, 27: 8442-8447. |
128 | OBROVAC M N , CHEVRIER V L . Alloy negative electrodes for Li-ion batteries[J]. Chem. Rev., 2014, 114: 11444-11502. |
129 | VU A, QIAN Y , STEIN A . Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special[J]. Adv. Energy Mater., 2012, 2: 1056-1085. |
130 | ZHANG H , YU X , BRAUN P V . Three-dimensional bicontinuous ultrafast-charge and discharge bulk battery electrodes[J]. Nat. Nanotechnol., 2011, 6: 277-281. |
131 | ZHU H , ZHANG F , LI J , et al . Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery[J]. Small, 2018, 14: 1703951. |
132 | CUI C , WEI Z , XU J , et al . Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties[J]. Energy Storage Mater., 2018, 15: 22-30. |
133 | LIU C , LI F , MA L P , et al . Advance materials for energy storage[J]. Adv. Mater., 2010, 22: E28-E62. |
134 | LI H , ZHOU H . Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chem. Commun., 2012, 48: 1201-1217. |
135 | MYUNG S T , AMINE K , SUN Y K . Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries[J]. J. Mater. Chem., 2010, 20: 7074-7095. |
136 | HU X , ZHANG W , LIU X , et al . Nanostructured Mo-based electrode materials for electrochemical energy storage[J]. Chem. Soc. Rev., 2015, 44: 2376-2404. |
137 | TONG X , ZHANG F , CHEN G , et al . Core-shell aluminum@ carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates[J]. Adv. Energy Mater., 2018, 8: 1701967. |
138 | ZHANG S , WANG M , ZHOU Z , et al . Multifunctional electrode design consisting of 3D porous separator modulated with patterned anode for high-performance dual-ion batteries[J]. Adv. Funct. Mater., 2017, 27: 1703035. |
139 | GUNAWARDHANA N , PARK G J , DIMOV N , et al . Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode[J]. J. Power Sources, 2011, 196: 7886-7890. |
140 | PARK G , GUNAWARDHANA N , LEE C, et al . Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode[J]. J. Power Sources, 2013, 236: 145-150. |
141 | THAPA A K , PARK G , NAKAMURA H , et al . Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system[J]. Electrochim. Acta, 2010, 55: 7305-7309. |
142 | LI C , WANG X , LI J , et al . FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries[J]. Chem. Commun., 2018, 54: 4349-4352. |
143 | ZHAO M , HUANG Y , PENG Y , et al . Two-dimensional metal-organic framework nanosheets: Synthesis and applications[J]. Chem. Soc. Rev., 2018, 47: 6267-6295. |
144 | TAN C , LAI Z , ZHANG H . Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Adv. Mater., 2017, 29: 1701392. |
145 | LIAN P C , DONG Y F , WU Z S , et al . Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. |
146 | WANG X , QI L , WANG H . Commercial carbon molecular sieves as a Na+-storage anode material in dual-ion batteries[J]. J. Electrochem. Soc., 2017, 164: A3649-A3656. |
147 | DONG S , LI Z , RODRíGUEZ-PéREZ I A , et al . A novel coronene//Na2Ti3O7 dual-ion battery[J]. Nano Energy, 2017, 40: 233-239. |
148 | SEN U K, MITRA S . High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1240-1247. |
149 | JIN R , YANG L , LI G , et al . Hierarchical worm-like CoS2 composed of ultrathin nanosheets as an anode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2015, 3: 10677-10680. |
150 | LI C , HU X , TONG W , et al . Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS. Appl. Mater. Interfaces, 2017, 9: 29829-29838. |
151 | NING Y , LOU X , LI C , et al . Ultrathin cobalt‐based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage[J]. Chem. Eur. J., 2017, 23: 15984-15990. |
152 | MASHTALIR O , NAGUIB M , MOCHALIN V N , et al . Intercalation and delamination of layered carbides and carbonitrides[J]. Nat. Commun., 2013, 4: 1716. |
153 | ANASORI B , LUKATSKAYA M R , GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017, 2: 16098. |
154 | LUO J , TAO X , ZHANG J , et al . Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10: 2491-2499. |
155 | ER D, LI J , NAGUIB M , et al . Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6: 11173-11179. |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[3] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[4] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[5] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[6] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[7] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[8] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[9] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[10] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[11] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[12] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[13] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[14] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
[15] | LIU Xingwen, HE Jinxin, WANG Hailin, JIN Chengyou, MIAO Yonghua, XUE Chi. Preparation and electrochemical performance of F-doped SiO@C composite material [J]. Energy Storage Science and Technology, 2019, 8(S1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||