Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 869-877.doi: 10.19799/j.cnki.2095-4239.2019.0255
Previous Articles Next Articles
					
													TU Weichao1, LI Wenyan1(
), ZHANG Qiang2, Jia'ao WANG3
												  
						
						
						
					
				
Received:2019-11-11
															
							
																	Revised:2020-02-07
															
							
															
							
																	Online:2020-05-05
															
							
																	Published:2020-05-11
															
						Contact:
								Wenyan LI   
																	E-mail:liweny@126.com
																					CLC Number:
TU Weichao, LI Wenyan, ZHANG Qiang, Jia'ao WANG. Engineering application of flywheel energy storage in power system[J]. Energy Storage Science and Technology, 2020, 9(3): 869-877.
Table 1
Summary of main flywheel products at home and abroad"
| 厂家及型号 | 功率 /kW  | 电量 /kW?h  | 转子材料 | 轴向轴承 | 径向 轴承  | 电机 | 最高转速 | 应用领域 | 
|---|---|---|---|---|---|---|---|---|
| Beacon power | 100 | 25 | 复合材料 | 永磁 | 机械 | 永磁直流无刷 | 16000 | 电网调频 | 
| Temporal power | 500 | 50 | 4340钢 | 永磁 | 机械 | 异步电机 | 11500 | 调频、无功补偿 | 
| Amber Kinetics | 8 | 32 | 钢材 | 电磁 | 机械 | 永磁直流无刷 | 8500 | 电网储能 | 
| KTSi GTR200 | 200 | 1.58 | 复合材料 | 宝石 | 永磁 | 永磁电机 | 36000 | 微电网 | 
| KTSi GTR333 | 333 | 1.58 | 复合材料 | 宝石 | 永磁 | 永磁电机 | 36000 | 轨道交通 | 
| VYCON REGEN200 | 200 | 0.83 | 4640钢 | 电磁 | 电磁 | 永磁同步 | 36750 | 轨道交通 | 
| VYCON VDC450 | 450 | 1.74 | 4640钢 | 电磁 | 电磁 | 永磁同步 | 36750 | 不间断电源 | 
| Active Power | 300 | 2.9 | 4340钢 | 电磁 | 机械 | 开关磁阻电机 | 7700 | 不间断电源 | 
| 北京泓慧HHE2503 | 250 | 3 | 钢材 | 电磁 | 电磁 | 永磁同步 | 10500 | 不间断电源 | 
| 航天803所样机 | 300 | 1.3 | 钢材 | 永磁+电磁 | 电磁 | 永磁直流无刷 | 33000 | 不间断电源 | 
| 二重储能EP100 | 100 | 0.4 | 钢材 | 电磁 | 机械 | 开关磁阻电机 | 7500 | 不间断电源 | 
| 清华大学 | 1000 | 11.6 | 34CrNi3Mo | 永磁 | 机械 | 永磁同步 | 2700 | 石油钻机 | 
Table 2
Part of the joint projects of thermal power unit and energy storage system in China"
| 电池调频项目地点 | 投运时间 | 容量 | 参与公司 | 投资额/万元 | 万元/MW | 
|---|---|---|---|---|---|
| 北京石景山热电厂 | 2013年9月 | 2 MW/0.5 MW·h | 北京睿能世纪科技有限公司 | 2260 | 1130 | 
| 山西京玉电厂 | 2015年11月 | 9 MW/4.5 MW·h | 北京睿能世纪科技有限公司 | 5650 | 627 | 
| 山西晋能阳光电厂 | 2017年5月 | 9 MW/4.5 MW·h | 北京睿能世纪科技有限公司 | 4280 | 475 | 
| 山西同煤同达电厂 | 2017年7月 | 9 MW/4.5 MW·h | 深圳市科陆电子科技股份有限公/中安创盈能源科技产业有限公司 | 3680 | 408 | 
| 贵州清水河电厂 | 2018年2月 | 20 MW/10 MW·h | 江苏院新能源工程/阳光电源股份有限公司 | 6776 | 338 | 
| 内蒙古上都电厂 | 2018年5月 | 18 MW/9 MW·h | 深圳市科陆电子科技股份有限公司 | 4800 | 533 | 
| 粤电云河发电(云浮厂) | 2018年12月 | 9 MW/4.5 MW·h | 浙江万里扬股份有限公司 | 5000 | 555 | 
| 内蒙古准大电厂 | 2019年3月 | 9 MW/4.5 MW·h | 华泰慧能能源技术有限公司 | 3600 | 400 | 
| 华电忻州广宇电厂 | 2019年6月 | 9 MW/4.5 MW·h | 国电南京自动化股份有限公司 | 2650 | 294 | 
| 华润郴州鲤鱼江A厂 | 2019年9月 | 12 MW/6 MW·h | 深圳市科陆电子科技股份有限公司/科华恒盛股份有限公司 | 4000 | 333 | 
| 1 | 国家能源局.国家能源局发布2018年全国电力工业统计数据[EB/OL]. [2020-02-05]. . | 
| 2 | 李建林, 黄际元, 房凯, 等. 电池储能系统调频技术[M]. 北京: 机械工业出版社, 2018: 13-19. | 
| LI J L, HUANG J Y, FANG K, et al. Frequency regulation of electric power system using battery energy storage system[M]. Beijing: China Machine Press, 2018: 13-19. | |
| 3 | 李磊, 赵岩, 卞韶帅, 等. 国外自动发电控制辅助服务交易市场的比较研究[J]. 华东电力, 2011, 39(8): 1223-1227. | 
| LI L, ZHAO Y, BIAN S S, et al. Comparative study of automatic generation control ancillary service market of different countries[J]. East China Electric Power, 2011, 39(8): 1223-1227. | |
| 4 | 贺宜恒, 周明, 武昭原, 等. 国外典型电力平衡市场的运作模式及其对中国的启示[J]. 电网技术, 2018, 42(11): 3520-3528. | 
| HE Y H, ZHOU M, WU Z Y, et al. Study on operation mechanism of foreign representative balancing markets and its enlightenment for China[J]. Power System Technology, 2018, 42(11): 3520-3528. | |
| 5 | 何永秀, 陈倩, 费云志, 等. 国外典型辅助服务市场产品研究及对中国的启示[J]. 电网技术, 2018, 42(9): 2915-2922. | 
| HE Y Y, CHEN Q, FEI Y Z, et al. Typical foreign ancillary service market products and enlightenment to China[J]. Power System Technology, 2018, 42(9): 2915-2922. | |
| 6 | 杨娟. 国外电力辅助服务的采购方式与价格形成[J]. 中国物价, 2014(9): 74-76. | 
| YANG J. Purchase mode and price formation of foreign power auxiliary services[J]. China Price, 2014(9): 74-76. | |
| 7 | 张秋生. 大型火电机组一次调频参数的设置及其对协调控制系统稳定性的影响[J]. 河北电力技术, 2004(5): 9-11. | 
| ZHANG Q S. Setting of primary frequency control parameters for large fossil power plants and its effect on stability of coordinating control system[J]. Hebei Electric Power, 2004(5): 9-11. | |
| 8 | 国家能源局山西监管办公室. 山西能源监管办关于印发《山西电力调频辅助服务市场运营细则》的通知[EB/OL]. [2020-02-05]. | 
| 9 | 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5): 29-34. | 
| MOU C H, WU P Y, SUN G H, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system[J]. Thermal Power Generation, 2018, 47(5): 29-34. | |
| 10 | 国家能源局南方监管局. 关于印发《广东调频辅助服务市场交易规则(试行)》的通知[EB/OL]. [2020-02-05]. . | 
| 11 | 国家能源局华北监管局. 华北能源监管局关于征求蒙西电力市场交易规则意见的函[EB/OL]. [2020-02-05]. . | 
| 12 | 国家能源局西北监管局. 国家能源局西北监管局关于印发《西北区域发电厂并网运行管理实施细则》及《西北区域并网发电厂辅助服务管理实施细则》的通知[EB/OL]. [2020-02-05]. . | 
| 13 | Labs Inc. RGA. Storage and microgrid forming system for commercial, industrial, utility, and defense applications[EB/OL]. [2020-02-05]. http: | 
| //. | |
| 14 | 邱志强. 盾石磁能科技有限责任公司飞轮产品营销策略研究[D]. 秦皇岛: 燕山大学, 2018. | 
| QIU Z Q. Marketing strategy study on DMETC’s flywheel product[D]. Qinhuangdao: Yanshan University, 2018. | |
| 15 | 贝肯新能源(天津)有限公司. 工程案例[EB/OL]. [2020-02-05]. . | 
| 16 | Amber Kinetics Inc.. Products[EB/OL]. [2020-02-05]. . | 
| 17 | Swater Flow Group Inc.. About us[EB/OL]. [2020-02-05]. . | 
| 18 | 北京泓慧国际能源技术发展有限公司. 产品展示[EB/OL]. [2020-02-05]. . | 
| 19 | 沈阳微控新能源技术有限公司. 产品设备[EB/OL]. [2020-02-05]. . | 
| 20 | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. | 
| DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5):765-782. | |
| 21 | Indigo Energy Inc.. Axially free flywheel system: US 20020232793[P]. 2004-03-23. | 
| 22 | 唐长亮, 戴兴建. 新型高速宝石枢轴承抗磨损性能优势分析[J]. 机械设计与研究, 2010, 26(5): 67-70. | 
| TANG C L, DAI X J. The analysis on antiwear properties advantage of high speed improved pivot-jewel bearing[J]. Machine Design & Research, 2010, 26(5): 67-70. | |
| 23 | Ed CHIAO. Amber Kinetics[EB/OL]. [2020-02-05]. . | 
| 24 | 李树胜, 付永领, 刘平, 等. 磁悬浮飞轮动态UPS系统对拖充放电实验方法研究[J]. 储能科学与技术, 2018, 7(5): 828-833. | 
| LI S S, FU Y L, LIU P, et al. Research on twin trawling charging-discharging experimental method for the magnetically suspended flywheel-based dynamic UPS system[J]. Energy Storage Science and Technology, 2018, 7(5): 828-833. | |
| 25 | 张瑞煜, 祝长生. 飞轮轴向永磁轴承的径向干扰力分析与控制研究[J]. 机电工程, 2019(9): 879-885. | 
| ZHANG R Y, ZHU C S. Analysis and control of radial disturbing force of the axial permanent magnetic bearing in flywheel[J]. Journal of Mechanical & Electrical Engineering, 2019(9): 879-885. | |
| 26 | 刘良田. 基于磁悬浮电机飞轮电池电磁传动与支承设计[D]. 镇江: 江苏大学, 2016. | 
| LIU L T. The electromagnetic driving and supporting design of flywheel battery based on bearingless motor[D]. Zhenjiang: Jiangsu University, 2016. | |
| 27 | 汪勇, 戴兴建, 唐长亮. 大卸载力铠装永磁轴承设计分析[J]. 机械科学与技术, 2015, 34(6): 858-862. | 
| WANG Y, DAI X J, TANG C L. Analysis and design of armoured PMBs with huge unloading force[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 858-862. | |
| 28 | 戴兴建, 张超平, 王善铭, 等. 500 kW飞轮储能电源系统设计与实验研究[J]. 电源技术, 2014, 38(6): 1123-1126. | 
| DAI X J, ZHANG C P, WANG S M, et al. Design and experimental test of 500 kW flywheel energy storage power system[J]. Chinese Journal of Power Sources, 2014, 38(6): 1123-1126. | |
| 29 | 李奕良. 戴兴建, 张小章. 储能飞轮永磁卸载设计及试验[J]. 清华大学学报(自然科学版), 2008(8): 1268-1271. | 
| LI Y L, DAI X J, ZHANG X Z. Design and testing of a permanent magnetic bearing for an energy storage flywheel[J]. Journal of Tsinghua University(Science and Technology), 2008(8): 1268-1271. | |
| 30 | 王宗田. 立式飞轮电池分立式磁浮转子-轴承系统设计与仿真[D]. 杭州: 浙江工业大学, 2012. | 
| WANG Z T. Design and simulationsimulationofof maglev rotor-bearingsystem for discrete vertical flywheel battery[D]. Hangzhou: Zhejiang University of Technology, 2012. | |
| 31 | Beacon Power Corporation. Heat energy dissipation device for a flywheel energy storage system(FESS), an FESS with such a dissipation device and methods for dissipating heat energy: US 20020243359[P]. 2004-01-13. | 
| 32 | Temporal Power Ltd.. Cooled flywheel apparatus: US 201314072462[P]. 2014-05-08. | 
| 33 | 戴兴建, 姜新建, 王秋楠, 等. 1 MW/60 MJ飞轮储能系统设计与实验研究[J]. 电工技术学报, 2017, 32(21): 169-175. | 
| DAI X J, JIANG X J, WANG Q N, et al. The design and testing of a 1 MW/60 MJ flywheel energy storage power system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 169-175. | |
| 34 | Sandia National Laboratories. Design & development of a 20-MW flywheel-based frequency regulation power plant[R]. Livermore: SNL, 2008. | 
| 35 | Kinetics Amber. The future of energy storage[EB/OL]. [2020-02-05]. . | 
| 36 | KEMA. Carbon and life cycle comparison of traditional and flywheel power plants for grid frequency regulation applications[EB/OL]. [2020-02-05]. . | 
| 37 | Sandia National Laboratories. Investigation of synergy between electrochemical capacitors, flywheels, and batteries in hybrid energy storage for pv systems[R]. Livermore: SNL, 1999. | 
| 38 | Engelmann THILO, RAINER vor dem Esche, Tudi REDDY. Fast response flywheel energy storage technology for virtual power plants andmicrogrids[EB/OL]. [2020-02-05]. . | 
| 39 | Natural Resources Canada. Glencore Raglan mine renewable electricity smart-grid pilot demonstration[EB/OL]. [2020-02-05]. . | 
| 40 | 盾石磁能科技有限责任公司. 飞轮储能-微电网领域[EB/OL]. [2020-02-05]. . | 
| 41 | MARC M S. Alaska energy storage projects and opportunities[EB/OL]. [2020-02-05]. . | 
| 42 | 中国储能网. Beacon Power确定拍卖资产 20 MW飞轮储能项目折价77%出售[N/OL]. [2020-02-05]. . | 
| 43 | West Boylston Municipa llight Plant. WBMLP flywheel grant[EB/OL]. [2020-02-05]. . | 
| [1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. | 
| [2] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. | 
| [3] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. | 
| [4] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. | 
| [5] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. | 
| [6] | Hui YE, Aikui LI, Zhong ZHAGN. Overview of reactive power compensation technology based on energy storage [J]. Energy Storage Science and Technology, 2021, 10(6): 2209-2217. | 
| [7] | Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. | 
| [8] | Xingjian DAI, Dongxu HU, Zhilai ZHANG, Haisheng CHEN, Yangli ZHU. Analysis and application of high strength alloy steel flywheel structure and material [J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. | 
| [9] | Chunyi WANG, Kai ZHANG, Yang XU. Reactive power compensation technology for the inductive sensors of magnetic bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1650-1655. | 
| [10] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. | 
| [11] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. | 
| [12] | Hong LI, Jiangwei CHU, Shufa SUN, Honggang LI. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. | 
| [13] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. | 
| [14] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. | 
| [15] | Baohong ZHU, Guangjun LI, Shusheng LI, Yadong CUI. Power compensation and energy saving application of oil well generator based on energy storage flywheel [J]. Energy Storage Science and Technology, 2021, 10(3): 1088-1094. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||