Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1437-1445.doi: 10.19799/j.cnki.2095-4239.2021.0485
• Energy Storage System and Engineering • Previous Articles Next Articles
Junze GAO(), Yibing LIU(), Chuandi ZHOU, Haiting HE, Xin WU
Received:
2021-09-16
Revised:
2021-10-25
Online:
2022-05-05
Published:
2022-05-07
Contact:
Yibing LIU
E-mail:gaojunzenzb@163.com;lyb@ncepu.edu.cn
CLC Number:
Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel[J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445.
1 | 涂伟超, 李文艳, 张强, 等. 飞轮储能在电力系统的工程应用[J]. 储能科学与技术, 2020, 9(3): 869-877. |
TU W C, LI W Y, ZHANG Q, et al. Engineering application of flywheel energy storage in power system[J]. Energy Storage Science and Technology, 2020, 9(3): 869-877. | |
2 | 田录林, 李言, 田琦, 等. 轴向磁化的双环永磁轴承轴向磁力研究[J]. 中国电机工程学报, 2007, 27(36): 41-45. |
TIAN L L, LI Y, TIAN Q, et al. Research on the axial magnetic force of axially magnetized bi-annular-shaped permanent magnetic bearings[J]. Proceedings of the CSEE, 2007, 27(36): 41-45. | |
3 | 李泽辉, 滕万庆, 李翀. 磁悬浮储能飞轮用径向磁轴承磁路仿真分析[J]. 储能科学与技术, 2014, 3(4): 308-311. |
LI Z H, TENG W Q, LI C. Finite element analysis of a magnetic circuit of radial magnetic bearing for magnetically suspended flywheels[J]. Energy Storage Science and Technology, 2014, 3(4): 308-311. | |
4 | HASEGAWA H, MATSUE H, NAGASHIMA K, et al. Flywheel energy storage system using superconducting magnetic bearings for demonstration tests[J]. Quarterly Report of RTRI, 2016, 57(3): 221-227. |
5 | 朱熀秋, 龙勇. 交流径向-轴向六极混合磁轴承结构及其悬浮力特性分析[J]. 中国电机工程学报, 2019, 39(6): 1815-1824, 1877. |
ZHU H Q, LONG Y. Structure and suspension force characteristics analysis of AC radial-axial six-pole hybrid magnetic bearing[J]. Proceedings of the CSEE, 2019, 39(6): 1815-1824, 1877. | |
6 | EARNSHAW S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether[J]. Transactions of the Cambridge Philosophical Society, 1842(7): 97-114. |
7 | JIANG S Y, WANG H C, WEN S B. Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings[J]. Journal of Mechanical Science and Technology, 2014, 28(12): 5043-5053. |
8 | 于苏杭, 郭文勇, 滕玉平, 等. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642. |
YU S H, GUO W Y, TENG Y P, et al. A review of the structures and control strategies for flywheel bearings[J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. | |
9 | 戴兴建, 于涵, 李奕良. 飞轮储能系统充放电效率实验研究[J]. 电工技术学报, 2009, 24(3): 20-24. |
DAI X J, YU H, LI Y L. Efficient test on the charging and discharging of the flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 20-24. | |
10 | 李万杰, 张国民, 艾立旺, 等. 高温超导飞轮储能系统研究现状[J]. 电工电能新技术, 2017, 36(10): 19-31. |
LI W J, ZHANG G M, AI L W, et al. Development status of high-temperature superconducting flywheel energy storage system[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(10): 19-31. | |
11 | 李奕良, 戴兴建, 张小章. 储能飞轮永磁卸载设计及试验[J]. 清华大学学报(自然科学版), 2008, 48(8): 1268-1271. |
LI Y L, DAI X J, ZHANG X Z. Design and testing of a permanent magnetic bearing for an energy storage flywheel[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(8): 1268-1271. | |
12 | ZHANG L, WU H C, LI P, et al. Design, analysis, and experiment of multiring permanent magnet bearings by means of equally distributed sequences based Monte Carlo method[J]. Mathematical Problems in Engineering, 2019, 2019: 4265698. |
13 | 张海波, 邱玉江, 蒋书运. 永磁轴承承载能力分子电流模型的积分定义求解方法[J]. 机械工程学报, 2016, 52(7): 54-59. |
ZHANG H B, QIU Y J, JIANG S Y. Analysis of the equivalent surface current model for the permanent magnet bearing by using the integral definition[J]. Journal of Mechanical Engineering, 2016, 52(7): 54-59. | |
14 | MARINESCU M, MARINESCU N. A new improved method for computation of radial stiffness of permanent magnet bearings[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3491-3494. |
15 | FANG J C, LE Y, SUN J J, et al. Analysis and design of passive magnetic bearing and damping system for high-speed compressor[J]. IEEE Transactions on Magnetics, 2012, 48(9): 2528-2537. |
16 | 张坚, 孙玉卓, 张海龙, 等. 基于ANSYS的推力永磁轴承磁力特性研究[J]. 轴承, 2014(4): 5-9. |
ZHANG J, SUN Y Z, ZHANG H L, et al. Research on magnetic force characteristics of thrust permanent magnetic bearing based on ANSYS[J]. Bearing, 2014(4): 5-9. | |
17 | MOSER R, SANDTNER J, BLEULER H. Optimization of repulsive passive magnetic bearings[J]. IEEE Transactions on Magnetics, 2006, 42(8): 2038-2042. |
18 | 田录林, 李言, 杨国清, 等. 径向磁化的双筒永磁轴承轴向磁力研究[J]. 机械科学与技术, 2007, 26(9): 1216-1219. |
TIAN L L, LI Y, YANG G Q, et al. Study of the axial magnetic force of radial magnetization Bi-barrel-shaped permanent magnetic bearings(PMB)[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(9): 1216-1219. | |
19 | 王念先, 王东雄, 陈奎生, 等. 基于Halbach阵列的永磁轴承承载力解析模型及设计方法[J]. 机械工程学报, 2016, 52(3): 128-135. |
WANG N X, WANG D X, CHEN K S, et al. Bearing capacity model and design method of permanent magnetic bearings based on halbach array[J]. Journal of Mechanical Engineering, 2016, 52(3): 128-135. | |
20 | 李贺, 帅长庚, 王迎春. 船用永磁推力轴承轴向刚度特性研究[J]. 磁性材料及器件, 2019, 50(5): 31-34, 48. |
LI H, SHUAI C G, WANG Y C. Study on the axial stiffness of marine permanent magnetic thrust bearing[J]. Journal of Magnetic Materials and Devices, 2019, 50(5): 31-34, 48. | |
21 | BEKINAL S I, DODDAMANI M. Improvement in the design calculations of multi ring permanent magnet thrust bearing[J]. Progress in Electromagnetics Research M, 2020, 94: 83-93. |
22 | 钟文定. 铁磁学.下册[M]. 北京: 科学出版社, 2017. |
ZHONG W D. Ferromagnetism.Volume 2[M]. Beijing: Science Press, 2017. | |
23 | 林其壬, 赵佑民. 磁路设计原理[M]. 北京: 机械工业出版社, 1987. |
LIN Q R, ZHAO Youmin. Principles of magnetic circuit design[M]. Beijing: China Machine Press, 1987. | |
24 | 梅柏杉, 翁兴华. 圆盘式Halbach结构永磁轴承解析模型[J]. 微电机, 2021, 54(7): 39-43, 86. |
MEI B S, WENG X H. Analytical model of magnetic and stiffness of disc-type halbach structure permanent magnetic bearing[J]. Micromotors, 2021, 54(7): 39-43, 86. | |
25 | SUN J J, WANG C E, LE Y. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG[J]. Journal of Magnetism and Magnetic Materials, 2016, 412: 147-155. |
[1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[2] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[3] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[4] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[5] | Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. |
[6] | Xingjian DAI, Dongxu HU, Zhilai ZHANG, Haisheng CHEN, Yangli ZHU. Analysis and application of high strength alloy steel flywheel structure and material [J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. |
[7] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[8] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[9] | Hong LI, Jiangwei CHU, Shufa SUN, Honggang LI. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. |
[10] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[11] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. |
[12] | Baohong ZHU, Guangjun LI, Shusheng LI, Yadong CUI. Power compensation and energy saving application of oil well generator based on energy storage flywheel [J]. Energy Storage Science and Technology, 2021, 10(3): 1088-1094. |
[13] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[14] | Junshui WANG, Xingjian DAI, Yang XU, Zhenhong PI. Optimization design of a high-speed flywheel for energy storage with a mandrel hub assembly [J]. Energy Storage Science and Technology, 2020, 9(6): 1806-1811. |
[15] | HAN Chuanjun, TIAN Degao, ZHOU Yong. Simulation analysis of flywheel energy storage beam pumping unit [J]. Energy Storage Science and Technology, 2020, 9(4): 1186-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||