Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (4): 1186-1192.doi: 10.19799/j.cnki.2095-4239.2020.0033
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
HAN"Chuanjun1(), TIAN"Degao1, ZHOU"Yong2
Received:
2020-01-14
Revised:
2020-02-22
Online:
2020-07-05
Published:
2020-06-30
CLC Number:
HAN Chuanjun, TIAN Degao, ZHOU Yong. Simulation analysis of flywheel energy storage beam pumping unit[J]. Energy Storage Science and Technology, 2020, 9(4): 1186-1192.
1 | FENG Z M, TAN J J, LI Q, et al. A review of beam pumping energy-saving technologies[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8( 1): 299- 311. |
2 | 王紫旭. 游梁式抽油机电机功率动态调整技术[J]. 大庆石油地质与开发, 2018, 37( 3): 101- 103. |
WANG Zixu. Dynamic adjustment technology of motor power for beam pumping units[J]. Daqing Petroleum Geology and Development, 2018, 37( 3): 101- 103. | |
3 | 王义龙, 赵海森, 霍承祥, 等. 抽油机电动机断续供电节能技术断电时刻判定方法[J]. 电力自动化设备, 2017, 37( 11): 182- 186. |
WANG Yilong, ZHAO Haisen, HUO Chengxiang, et al. Method for judging the power-off time of intermittent power supply and energy-saving technology for pumping unit motors[J]. Power Automation Equipment, 2017, 37( 11): 182- 186. | |
4 | 赵海森, 王博, 王义龙, 等. 势能负载条件下感应电机变频-调压分段节能控制策略研究[J]. 中国电机工程学报, 2015, 35( 6): 1490- 1497. |
ZHAO Haisen, WANG Bo, WANG Yilong, et al. Study on energy-saving control strategy of induction motors with variable frequency and voltage regulation sections under potential energy load[J]. Journal of China Electrical Engineering, 2015, 35( 6): 1490- 1497. | |
5 | 王义龙, 赵海森, 王泽忠, 等. 游梁式抽油机电动机断续供电节能技术断电时刻准确判定方法[J]. 中国电机工程学报, 2018, 38( 15): 4537- 4545, 4654. |
WANG Yilong, ZHAO Haisen, WANG Zezhong, et al. Accurate determination method of power-off time for energy saving technology of intermittent power supply for beam pumping units[J]. Journal of China Electrical Engineering, 2018, 38( 15): 4537- 4545, 4654. | |
6 | LU J, HE J, MAO C, et al. Design and implementation of a dual PWM frequency converter used in beam pumping unit for energy saving[J]. IEEE Transactions on Industry Applications, 2014, 50( 5): 2948- 2956. |
7 | TIAN J, GAO M, ZHOU S, et al. Energy-saving control system of beam-pumping unit based on wavelet neural network[C]// Fourth International Conference on Natural Computation. IEEE Computer Society, 2008. |
8 | Hongqiang LYU, LIU Jun, HAN Jiuqiang, et al. An energy saving system for a beam pumping unit[J]. Sensors, 2016, 16( 5): doi: 10.3390/s16050685. |
9 | 陈亚爱, 甘时霖, 周京华, 等. 飞轮储能技术[J]. 电源技术, 2016, 40( 8): 1718- 1721. |
CHEN Yaai, GAN Shilin, ZHOU Jinghua, et al. Flywheel energy storage technology[J]. Chinese Journal of Power Sources, 2016, 40 ( 8): 1718- 1721. | |
10 | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable & Sustainable Energy Reviews, 2017, 67: 477- 490. |
11 | ZHANG X, YANG J. A DC-link voltage fast control strategy for high-speed PMSM/G in flywheel energy storage system[J]. IEEE Transactions on Industry Applications, 2017( 99): 1. |
12 | MIYAZAKI Y, MIZUNO K, YAMASHITA T, et al. Development of superconducting magnetic bearing for flywheel energy storage system[J]. Cryogenics, 2016, 80( 2): 234- 237. |
13 | SPIRYAGIN M, WOLFS P, SZANTO F, et al. Application of flywheel energy storage for heavy haul locomotives[J]. Applied Energy, 2015, 157: 607- 618. |
14 | 姜民政, 殷兆国, 高春红, 等. 抽油机飞轮蓄能器及其对电机能耗的影响[J]. 油气田地面工程, 2009, 28( 1): 62- 63. |
JIANG Minzheng, YIN Zhaoguo, GAO Chunhong, et al. Flywheel accumulator of pumping unit and its influence on energy consumption of motor[J]. Oil and Gas Field Surface Engineering, 2009, 28( 1): 62- 63. | |
15 | 王钰文, 邓皓天, 徐正彬, 等. 基于模糊控制的游梁式抽油机动态平衡方法研究[J]. 制造业自动化, 2019, 41( 5): 70- 74. |
WANG Yuwen, DENG Haotian, XU Zhengbin, et al. Study on dynamic balance method of beam pumping unit based on fuzzy control[J]. Manufacturing Automation, 2019, 41( 5): 70- 74. | |
16 | WU Xiaomeng, WANG Xiaorong. Mathematical simulation of calculation chart for oil pumping rod load[C]// Asia-pacific Conference on Information Processing. IEEE Computer Society, 2009. |
[1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[2] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[3] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[4] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[5] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[6] | Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. |
[7] | Xingjian DAI, Dongxu HU, Zhilai ZHANG, Haisheng CHEN, Yangli ZHU. Analysis and application of high strength alloy steel flywheel structure and material [J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. |
[8] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[9] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[10] | Hong LI, Jiangwei CHU, Shufa SUN, Honggang LI. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. |
[11] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[12] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. |
[13] | Baohong ZHU, Guangjun LI, Shusheng LI, Yadong CUI. Power compensation and energy saving application of oil well generator based on energy storage flywheel [J]. Energy Storage Science and Technology, 2021, 10(3): 1088-1094. |
[14] | Jianjun CAO, Jun WANG, Liyong ZHANG, Yaqi LIU, Haoshu LING, Liang WANG, Yujie XU, Xuezhi ZHOU, Haisheng CHEN. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy [J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. |
[15] | Junshui WANG, Xingjian DAI, Yang XU, Zhenhong PI. Optimization design of a high-speed flywheel for energy storage with a mandrel hub assembly [J]. Energy Storage Science and Technology, 2020, 9(6): 1806-1811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||