Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 688-695.doi: 10.19799/j.cnki.2095-4239.2020.0004
Previous Articles Next Articles
GUO Xiuying(), LI Xianming, XU Zhuang, HE Guangli, MIAO Ping
Received:
2020-01-05
Revised:
2020-01-17
Online:
2020-05-05
Published:
2020-05-11
CLC Number:
GUO Xiuying, LI Xianming, XU Zhuang, HE Guangli, MIAO Ping. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 688-695.
Table 2
Summary of technical assumptions"
项目规模/MW | 1 | 40 |
---|---|---|
碱性常压电解固定成本/$·kW-1 | $ 870 | $536 |
碱性30 atm电解固定成本/$·kW-1 | $1250 | $775 |
PEM 30 atm电解固定成本/$·kW-1 | $ 2100 | $ 840 |
碱性常压电解效率/(kW·h)·kg-1 H2 | 54.88 | 53.76 |
碱性30atm 电解效率/(kW·h)·kg-1 H2 | 54.88 | 53.76 |
PEM 30atm电解效率/(kW·h)·kg-1 H2 | 49.28 | 58.24 |
固定运维/$·kW-1 | 2% of CAPEX | 2% of CAPEX |
可变运维/$·kg-1 H2 | $ 0.1 | $ 0.1 |
氧气收入/$·Ton-1 | $ 50 | $ 50 |
辅助服务/$·(MW·h)-1 | — | — |
液化电量/(kW·h)·kg-1 H2 | $ 12 | $ 12 |
液化固定成本/$·kW-1 | $ 2,800 | $ 490 |
等温压缩效率 | 50% | 50% |
压缩固定成本/$·kW-1(1~700 atm) | $ 200.0 | $ 100.0 |
压缩固定成本/$·kW-1(30~700 atm) | $ 100.0 | $ 50.0 |
压缩固定成本/$·kW-1(200~700 atm) | $ 25.0 | $ 12.5 |
Table 3
Cost analysis and comparison of alkaline and PEM electrolytic hydrogen production under 40MW fluctuating power input"
参数 | 碱性 | PEM |
---|---|---|
太阳能供电/MW | 40 | 40 |
30 atm电解固定成本/$·kW-1 | $775 | $840 |
30 atm 电解系统效率/kW·h·kg-1 H2 | 53.76 | 58.24 |
电流密度/A·cm-2 | 0.25~0.45 | 1.0~2.0 |
可允许的最小负载/% | 20 | 0 |
可允许的最大负载/% | 120 | 150 |
冷启动时间/min | 60~120 | 5~10 |
热启动时间 | 1~5 min | <10 s |
计算结果 | ||
所需电解装置规模/MW | 34.3 | 26.8 |
产氢量/kg H2·h-1 | 595 | 686 |
固定成本投入/10000$ | 2658 | 2251 |
1 | Renewables 2018 Global Status Report[R]. REN21 (Paris), 2019. |
2 | ASHREETA P, VIKTOR D. Feasibility of renewable hydrogen based energy supply for a district[J]. Energy Procedia, 2017, 122: 373-378. |
3 | SIMONIS B, NEWBOROUGH M. Sizing and operating power-to-gas systems to absorb excess renewable electricity[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21635-21647. |
4 | KONG L, YU J, CAI G. Modeling, control and simulation of a photovoltaic/hydrogen/supercapacitor hybrid power generation system for grid-connected applications[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25129-25144. |
5 | CHEHADE Z, MANSILLA C, LUCCHESE P, et al. Review and analysis of demonstration projects on power-to-X pathwasys in the world[J]. International Journal of Hydrogen Energy, 2019, 44(51): 27637-27655. |
6 | THYSSENKRUP P. Clean energy, renewable fuels & chemicals, carbon recycling[EB/OL].[2018-10-01].. |
7 | JANUSZ K,DANIEL W, MICHAL J. Analysis of component operation in power-to-gas-to-power installations[J]. Applied Energy, 2018, 216(15): 45-59. |
8 | ANNA L B, DESIDERIA U. Opportunities of power-to-gas technology in different energy systems architectures[J]. Applied Energy, 2018, 228(15): 57-67. |
9 | GUERRA O J, EICHMAN J, KURTZ J, et al. Cost competitiveness of electrolytic hydrogen[J]. Joule, 2019, 3(10): 2425-2443. |
10 | MAYYAS A, MANN M. Manufacturing competitiveness analysis for hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2019, 44(18): 9121-9142. |
11 | REDDI K, ELGOWAINY A, RUSTAGI N, et al. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21855-21865. |
12 | JOSHUA E,AARON T,MARC M. DOE economic assessment of hydrogen technologies participating in california electricity markets[R]. U S Department of Energy, Washington, D C, 2016. |
13 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2440-2454. |
14 | SABA S M, MULLER M, ROBINIUS M. The instrument costs of electrolysis—A comparison of cost studies from the past 30 years[J]. International Journal of Hydrogen Energy, 2018, 43: 1209-1223. |
15 | SATYAPAL S. DOE Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs[R]. DOE Hydrogen and Fuel Cells Program Record, 2009. |
16 | KASPER T M, TORBEN R J, ETSUO A, et al. Hydrogen—A sustainable energy carrier[J]. Progress in Natural Science: Materials International, 2017, 27(1): 34-40. |
17 | ZHANG Y, TANG N, NIU Y, et al.Wind energy rejection in China: Current status, reasons and perspectives[J]. Renew. Sustain. Energy Rev., 2016, 66: 322-344. |
18 | DISPENZA G, SERGI F, NAPOLII G, et al. Development of a solar-powered hydrogen fueling station in smart cities applications[J]. International Journal of Hydrogen Energy, 2017, 42(46): 27884-27893. |
19 | TANG N, ZHANG Y, NIU Y, et al. Solar energy curtailment in China: Status quo, reasons and solutions[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 509-528. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Jin XU, Xian DING, Yongli GONG, Guangli HE, Ting HU. Economic analysis of hydrogen production plant with water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. |
[3] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[5] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[6] | Zixuan WANG, Juncheng LI, Jindong LI, Juan YI, Lin SHI, Xu WU. Resource recovery technology of spent lithium iron phosphate cathode material [J]. Energy Storage Science and Technology, 2022, 11(1): 45-52. |
[7] | Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media [J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. |
[8] | Xi CHEN, Qian LIU, Jianghai XU, Shichun LONG, Zhongmin WAN. A combined heat power and hydrogen production system based on solar energy and Rankine cycle [J]. Energy Storage Science and Technology, 2021, 10(2): 611-616. |
[9] | Xiuli SU, Wenjun LIAO, Yan LI. Opportunities and challenges of hydrogen production with decoupled water electrolysis [J]. Energy Storage Science and Technology, 2021, 10(1): 87-95. |
[10] | ZHANG Mengtian, TIAN Shu, ZENG Zhihui. Optimal allocation of hybrid energy storage capacity based on variational mode decomposition [J]. Energy Storage Science and Technology, 2020, 9(1): 170-177. |
[11] | JIANG Zhongming, LIU Liyuan, HU Wei, MEI Songhua, LI Peng. Thermodynamic analysis of compressed air storage in a underground rock cavern considering the influence of compression factor [J]. Energy Storage Science and Technology, 2018, 7(5): 902-907. |
[12] | WANG Shuo1,2, ZHANG Jun3 . Research on patent status and process route of hydrogen production in China [J]. Energy Storage Science and Technology, 2018, 7(2): 353-362. |
[13] | WEI Chengzhi1, WEN An1, XU Guangfu2, ZHU Haobin2. Optimal allocation of energy storage system for smoothing output power of the grid-connected photovoltaic plant [J]. Energy Storage Science and Technology, 2017, 6(S1): 37-. |
[14] | WANG Shouxiang1, WANG Kai1, ZHAO Ge2. Configuration and control of energy storage system for fluctuation mitigation in an active distribution network—A review [J]. Energy Storage Science and Technology, 2017, 6(6): 1188-. |
[15] | LV Zewei, HAN Minfang. Design of solar cogeneration system of hydrogen and power with solid oxide cells#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 275-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||