Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1720-1728.doi: 10.19799/j.cnki.2095-4239.2020.0131
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:2020-04-02
Revised:2020-05-08
Online:2020-11-05
Published:2020-10-28
Contact:
Bing LIU
E-mail:1144131562@qq.com;Liub@upc.edu.cn
CLC Number:
Lanfang ZHU, Bing LIU. Influence of graphene surface distance and carbon nanotube diameter on capacitance of a double layer capacitor[J]. Energy Storage Science and Technology, 2020, 9(6): 1720-1728.
Table 1
Interaction energy corresponding to spacing in the plate capacitor"
| 面间距/nm | 测量位置与极板的距离Z/nm | K+与其结合水间的相互作用能/kJ·mol-1 | K+与壁面间的相互作用能/kJ·mol-1 | H2O与壁面间的相互作用能/kJ·mol-1 | K+的结合水与其结合水间的相互作用能/kJ·mol-1 |
|---|---|---|---|---|---|
| 0.55 | 0.1375 | -114.661 | 0.949 | 8.433 | -7.427 |
| 0.2750 | -151.324 | 0.864 | 6.345 | -15.019 | |
| 0.6 | 0.1500 | -240.247 | -46.142 | -2.648 | -7.332 |
| 0.3000 | -240.714 | -41.470 | -2.123 | -15.505 |
Table 2
Interaction energy at different positions when diameter of cylinder is 0.797~1.199 nm"
| 面间距/nm | 测量位置与极板的距离Z/nm | K+与其结合水间的相互作用能/kJ·mol-1 | K+与壁面间的相互作用能/kJ·mol-1 | H2O与壁面间的相互作用能/kJ·mol-1 | K+的结合水与其结合水间的相互作用能/kJ·mol-1 |
|---|---|---|---|---|---|
| 0.9936 | 0.2340 | -552.668 | 2.580 | -0.287 | -5.610 |
| 0.2997 | -370.242 | 5.079 | -3.047 | -18.490 | |
| 1.1199 | 0.2997 | -370.242 | 5.079 | -3.047 | -18.490 |
| 0.5994 | 132.873 | 5.438 | -3.088 | -2.322 |
| 1 | FAGGIOLI E, RENA P, DANEL V. Supercapacitors for the energy management of electric vehicles[J]. Journal of Power Sources, 1999, 84(2): 261-269. |
| 2 | GOGOTSI Y, SIMON P. True performance metrics in electrochemical energy storage[J]. Science, 2011, 334(6058): 917-918. |
| 3 | 郎俊伟, 张旭, 王儒涛, 等. 超级电容器能量密度的提升策略[J]. 电化学, 2017, 23(5): 507-532. |
| LANG Junwei, ZHANG Xu, WANG Rutao, et al. Strategies for increasing energy density of supercapacitors[J]. Journal of Electrochemistry, 2017, 23(5): 507-532. | |
| 4 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
| 5 | HUANG Jingsong, SUMOTER B G, MEUNIER V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry-A European Journal, 2008, 14(22): 6614-6626. |
| 6 | FENG Guang, CUMMINGS P T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size[J]. Journal of Physical Chemistry Letters, 2011, 2(22): 2859-2864. |
| 7 | QIU Yinghua, CHEN Yunfei. Capacitance performance of sub-2 nm graphene nanochannels in aqueous electrolyte[J]. Journal of Physical Chemistry C, 2015, 119(42): 23813-23819. |
| 8 | NICOLAS J, SIMON P, GOGOTSI Y, et al. Increase in capacitance by subnanometer pores in carbon[J]. ACS Energy Letters, 2017, 1(6): 1262-1265. |
| 9 | FENG Guang, QIAO Rui, HUANG Jingsong, et al. Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance[J]. ACS Nano, 2010, 4(4): 2382-2390. |
| 10 | WANG Zhenxing, DAVID L O, MARK A, et al. Electric potential calculation in molecular simulation of electric double layer capacitors[J]. Journal of Physics Condensed Matter, 2016, 28(46): 464006-464016. |
| 11 | CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic, acids, and organic molecules[J]. Journal of the American Chemical Society, 1996, 118(9): 2309-2309. |
| 12 | LEE S H, RASAIAH J C. Molecular dynamics simulation of ion mobility (Ⅱ): Alkali metal and halide ions using the SPC/E model for water at 25 ℃[J]. The Journal of Physical Chemistry, 1996, 100(4): 1420-1425. |
| 13 | MUNZ M, GIUSCA C E, MYERS-WARD R L, et al. Thickness-dependent hydrophobicity of epitaxial graphene[J]. ACS Nano, 2015, 9(8): 8401-8311. |
| 14 | KYAKUNO H, FUKASAWA M, ICHIMURA R, et al. Diameter-dependent hydrophobicity in carbon nanotubes[J]. The Journal of Chemical Physics, 2016, 145(6): 1-12. |
| [1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
| [2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
| [3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
| [4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
| [5] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
| [6] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
| [7] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
| [8] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
| [9] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
| [10] | Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 887-895. |
| [11] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
| [12] | Zhijie BI, Ning ZHAO, Xiangxin GUO. Electrochromic-supercapacitors based on tungsten oxide and prussian blue [J]. Energy Storage Science and Technology, 2021, 10(3): 952-957. |
| [13] | Xiliang WANG, Wenfeng CUI, Kefeng TONG, Xuelong CHEN, Zhijun QIAO, Dianbo RUAN. Design and simulation of an integrated three-port converter for supercapacitor energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 1095-1102. |
| [14] | Xiangdong LI, Rui LIAN, Jiamei WU, Lianghui TANG, Zhijun QIAO, Dianbo RUAN. Thermal simulation analysis of a supercapacitor module charge-discharge cycle based on the Fluent software [J]. Energy Storage Science and Technology, 2021, 10(2): 732-737. |
| [15] | Rui FENG, Hai LU, Xinyi LIU, Hao LI, Xiangyuan LI. Study on effect of an asymmetric design of the mass on the cathode and anode on supercapacitor performance [J]. Energy Storage Science and Technology, 2021, 10(2): 491-496. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
