Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 945-951.doi: 10.19799/j.cnki.2095-4239.2021.0018
Previous Articles Next Articles
Shuai CHEN(), Ling CHEN, Hao JIANG()
Received:
2021-01-14
Revised:
2021-02-15
Online:
2021-05-05
Published:
2021-04-30
Contact:
Hao JIANG
E-mail:1641377385@qq.com;jianghao@ecust.edu.cn
CLC Number:
Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors[J]. Energy Storage Science and Technology, 2021, 10(3): 945-951.
Fig. 4
(a) high-magnification SEM (inset is in low-magnification) of MnO2@CC; (b) the cross-sectional SEM image of the MnO2@CC//VOx-NH3-300@CC (inset is the photographic image); (c) CV curves of the electrodes and the device at the scan rate of 20 mV·s-1; (d) rate capability (inset is the capacitance retention measured at different bend angles); (e) cycling stability; (f) Ragone plots of the MnO2@CC//VOx-NH3-300@CC"
1 | EL-KADY M, STRONG V A, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
2 | HUANG Y, ZHU M, HUANG Y, et al. Multifunctional energy storage and conversion devices[J]. Advanced Materials, 2016, 28(38): 8344-8364. |
3 | ZHENG K, ZENG Y X, LIU S, et al. Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors[J]. Energy Storage Materials, 2019, 22: 410-417. |
4 | 江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877. |
JIANG H, LI C Z. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances[J]. CIESC Journal, 2015, 66(8): 2872-2877. | |
5 | SAHOO R, LEE T H, PHAM D T, et al. Fast-charging high-energy battery-supercapacitor hybrid: Anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure[J]. ACS Nano, 2019, 13(9): 10776-10786. |
6 | 刘长玲, 韩丹丹. 超级电容器金属氧化物电极材料的研究进展[J]. 广东化工, 2016, 43(24): 90-91. |
LIU C L, HAN D D. Research progress on metal oxides electrode materials for supercapacitors[J]. Guangdong Chemical Industry, 2016, 43(24): 90-91. | |
7 | LIU B T, SHI X M, LANG X Y, et al. Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides[J]. Nature Communications, 2018, 9(1): 1-9. |
8 | LI M L, SUN G Y, YIN P P, et al. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11462-11470. |
9 | YU M H, ZENG Y, HAN Y, et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles[J]. Advanced Functional Materials, 2015, 25(23): 3534-3540. |
10 | YAN S H, ABHILASH K P, TANG L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion[J]. Small, 2019, 15(4): doi: 10.1002/smll.201804371. |
11 | UCHAKER E, ZHENG Y Z, LI S. Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries[J]. Journal of Materials Chemistry, 2014, 2(43): 18208-18214. |
12 | 黄建华, 赖琼钰, 宋建梅, 等. 超级电容器用无定形V2O5电容性能研究[J]. 无机化学学报, 2007, 23(2): 237-242. |
HUANG J H, LAI Q Y, SONG J M, et al. Capacitive performance of amorphous V2O5 for supercapacitor[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(2): 237-242. | |
13 | WANG K B, ZHENG M B, SHI X B, et al. Glucose-ethanol-assisted synthesis of amorphous CoO@C core-shell composites for electrochemical capacitors electrode[J]. Chemical Engineering Journal, 2015, 266: 141-147. |
14 | HUANG G F, LI C P, BAI J, et al. Controllable-multichannel carbon nanofibers-based amorphous vanadium as binder-free and conductive-free electrode materials for supercapacitor[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22144-22154. |
15 | FANG H T, LIU M, WANG D W, et al. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading[J]. Nano Energy, 2013, 2(6): 1232-1241. |
16 | LI P, XIN Y, LI Q, et al. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites[J]. Environmental Science & Technology, 2012, 46(17): 9600-9605. |
17 | MA K, LIU X, CHENG Q L, et al. Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays[J]. Journal of Power Sources, 2017, 357: 71-76. |
18 | 孙贺雷, 李云飞, 易荣华, 等. N、B共掺杂MXene复合材料的制备及其电化学性能研究[J]. 储能科学与技术, 2019, 8(1): 130-137. |
SUN H L, LI Y F, YI R H, et al. Preparation and characterization of electrochemical properties of nitrogen and boron co-doped MXene composite materials[J]. Energy Storage Science and Technology, 2019, 8(1): 130-137. | |
19 | CHAN M H, LU F H. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures[J]. Thin Solid Films, 2009, 517(17): 5006-5009. |
20 | GLUSHENKOV A M, HULICOVA-JURCAKOVA D, LLEWELLYN D, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5[J]. Chemistry of Materials, 2010, 22(3): 914-921. |
21 | MA Z, RUI K, ZHANG Y, et al. Nitrogen boosts defective vanadium oxide from semiconducting to metallic merit[J]. Small, 2019, 15(22): doi: 10.1002/smll.201900583. |
22 | 朱华威, 余海峰, 江仟仟, 等. 硼高效掺杂LiNi0.5Co0.2Mn0.3O2正极材料及其性能提升机制[J]. 化工学报, 2021, 72(1): 609-618. |
ZHU H W, YU H F, JIANG Q Q, et al. Synthesis and performance improvement mechanism of high-efficiency B-doped LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. CIESC Journal, 2021, 72(1): 609-618. | |
23 | SONG Y, LIU T Y, LI M Y, et al. Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors[J]. Advanced Energy Materials, 2018, 8(26): doi: 10.1002/aenm.201801784. |
24 | ARAVINDAN V, CHEAH Y L, MAK W F, et al. Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network[J]. ChemPlusChem, 2012, 77(7): doi: 10.1002/cplu.201200023. |
25 | MA M Y, SHI Z D, LI Y, et al. High-performance 3 V "water in salt" aqueous asymmetric supercapacitors based on VN nanowire electrodes[J]. Journal of Materials Chemistry A, 2020, 8(9): 4827-4835. |
26 | DONG R, SONG Y, YANG D, et al. Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage[J]. Journal of Materials Chemistry A, 2020, 8(3): 1176-1183. |
27 | LV W, YANG C, MENG G, et al. VO2(B) nanobelts/reduced graphene oxide composites for high-performance flexible all-solid-state supercapacitors[J]. Scientific Reports, 2019, 9(1): doi: 10.1038/s41598-019-47266-6. |
28 | MAK W F, WEE G, ARAVINDAN V, et al. High-energy density asymmetric supercapacitor based on electrospun vanadium pentoxide and polyaniline nanofibers in aqueous electrolyte[J]. Journal of the Electrochemical Society, 2012, 159(9): A1481-A1488. |
[1] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[2] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[3] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[4] | Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance [J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667. |
[5] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[6] | ZHANG Jinliang, KANG Danmiao, LIU Junqing, SU Zhijiang, LIANG Wenbin. Electrochemical performance of water soluble pitch-based porous carbons [J]. Energy Storage Science and Technology, 2020, 9(3): 743-750. |
[7] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[8] | TANG Lianghui, HE Ling, YU Xuewen, RUAN Dianbo, HE Xiaoyue. Thermal simulation analysis of supercapacitors based on fluent under multiple operating conditions [J]. Energy Storage Science and Technology, 2019, 8(5): 911-914. |
[9] | LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming. Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors [J]. Energy Storage Science and Technology, 2019, 8(2): 248-259. |
[10] | WANG Jiahe, YANG Xiaowei. Progress reports and prospect of stretchable electrochemical energy storage devices [J]. Energy Storage Science and Technology, 2018, 7(2): 157-166. |
[11] | ZHENG Chao, LI Linyan, CHEN Xuedan, YU Xuewen, GU Yingzhan, WU Yihuan, DING Sheng, PAN Guolin, ZHOU Zhou, LIU Qiuxiang, CHEN Kuan, YUAN Jun, YANG Bin, QIAO Zhijun, FU Guansheng, RUAN Dianbo. Review of selected 100 recent papers for supercapacitors(Jul. 1,2017 to Dec. 15,2017) [J]. Energy Storage Science and Technology, 2018, 7(1): 20-. |
[12] | ZHENG Chao, CHEN Xuedan, GU Yingzhan, WU Yihuan, DING Sheng, PAN Guolin, ZHOU Zhou, LI Linyan, LIU Qiuxiang, YU Xuewen, CHEN Kuan, YUAN Jun, YAN Bin, QIAO Zhijun, FU Guansheng, RUAN Dianbo. Review of selected 100 recent papers for supercapacitors(Oct. 1,2016 to Jun. 30,2017) [J]. Energy Storage Science and Technology, 2017, 6(5): 1128-1144. |
[13] | LIU Guanwei1,2, ZHANG Yichi1,2, CI Song1,2, YU Zhanqing1,2, ZENG Rong1,2. Research progress on flexible electrochemical energy storage devices [J]. Energy Storage Science and Technology, 2017, 6(1): 52-68. |
[14] | SONG Weili, FAN Lizhen. Advances in supercapacitors: From electrodes materials to energy storage devices [J]. Energy Storage Science and Technology, 2016, 5(6): 788-799. |
[15] | CHEN Xuedan1, CHEN Shuoyi2, QIAO Zhijun1, FU Guansheng1, RUAN Dianbo1. Applications of supercapacitors [J]. Energy Storage Science and Technology, 2016, 5(6): 800-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||