Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1657-1667.doi: 10.19799/j.cnki.2095-4239.2020.0209
• Energy Storage Materials and Devices • Previous Articles Next Articles
Rixin LAI1(), Chuanjian JIANG2, Lin LIU2(), Wenfeng ZHANG1(), Yu XIANG1, Hai MING1, Hao ZHANG1, Gaoping CAO1, Yun DU3
Received:
2020-06-11
Revised:
2020-06-26
Online:
2020-11-05
Published:
2020-10-28
Contact:
Lin LIU,Wenfeng ZHANG
E-mail:15207142156@163.com;lin@cumtb.edu.cn;wenfengzh@163.com
CLC Number:
Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance[J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667.
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-674. |
2 | 刘欢, 刘玉, 牟志刚, 等. 石墨烯的功能化研究进展[J]. 化工新型材料, 2020, 48(4): 29-48. |
LIU H, LIU Y, MOU Z G, et al. Recent advance in the functionalization of graphene[J]. New Chemical Materials, 2020, 48(4): 29-48. | |
3 | DENG Y F, XIE Y, ZOU K X, et al. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(4): 1144-73. |
4 | 林源为, 郭雪峰. 石墨烯表界面化学修饰及其功能调控[J]. 化学学报, 2014, 72(3): 277-88. |
LIN Y W, GUO X F. Chemical modification of graphene and its applications[J]. Acta Chimica Sinica, 2014, 72(3): 277-88. | |
5 | FAN M M, ZHANG Q F, ZHU C L, et al. Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species[J]. Journal of Materials Science, 2016, 51(23): 10323-49. |
6 | EKATERINA A A, ANTON S I, SERGUEI V S, et al. Effect of nitrogen doping of graphene nanoflakes on their efficiency in supercapacitor applications[J]. Functional Materials Letters, 2018, 11(6): 1840005. |
7 | WANG M, CHEN L L, ZHOU J Q, et al. First-principles calculation of quantum capacitance of metals doped graphenes and nitrogen/metals codoped graphenes: designing strategies for supercapacitor electrodes[J]. Journal of Materials Science, 2019, 54(1): 483-492. |
8 | GRANZIER-NAKAJIMA T, FUJISAWA K, ANIL V, et al. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization[J]. Nanomaterials, 2019, 9(3): 425. |
9 | LEI H P, TU J G, TIAN D H, et al. Nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors[J]. New Journal of Chemistry, 2018, 42(19): 15684-15691. |
10 | JIANG F, ZHANG J X, LI N, et al. Nitrogen-doped graphene prepared by thermal annealing of fluorinated graphene oxide as supercapacitor electrode[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(11): 3530-3537. |
11 | SUN H J, LIU B, PENG T J, et al. Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties[J]. Journal of Materials Science, 2018, 53(18): 13100-13110. |
12 | 苏鹏, 郭慧林, 彭三, 等. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11): 2745-2753. |
SU P,GUO H L,PENG S,et al. Preparation of nitrogen-doped graphene and its supercapacitiveproperties[J]. Acta Phys. -Chim, 2012, 28(11): 2745-2753. | |
13 | KATOH T, IMAMURA G, OBATA S, et al. Growth of N-doped graphene from nitrogen containing aromatic compounds: The effect of precursors on the doped site[J]. RSC Advances, 2016, 6(16): 13392-13399. |
14 | IMAMURA G, SAIKI K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2011, 115(20): 10000-10005. |
15 | WEI D C, LIU Y Q, WANG Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 7: 1752-1759. |
16 | LUO Z Q, LIM S H, TIAN Z Q, et al. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property[J]. Journal of Materials Chemistry, 2011, 21(22): 8038-8044. |
17 | CUI L Z, CHEN X D, LIU B Z, et al. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32622-32630. |
18 | ZAN R, ALTUNTEPE A. Nitrogen doping of graphene by CVD[J]. Journal of Molecular Structure, 2020, 1199: 127026. |
19 | YANG D J, GANG L, FAN W, et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors[J]. Applied Surface Science, 2018, 427: 986-993. |
20 | DENG D H, PAN X L, YU L, et al. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials, 2011, 23(5): 1188-1193. |
21 | LI N, WANG Z Y, ZHAO K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48(1): 255-263. |
22 | LIN Z Y, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7): 884-891. |
23 | 孙美岩, 苏伟丰, 张珅珅, 等. 碳布负载氮掺杂石墨烯及其电化学性能研究[J]. 硅酸盐通报, 2020, 39(3): 962-969. |
SUN M Y, SU W F, ZHANG K K, et al. Nitrogen-doping graphene loaded on carbon cloth and its electrochemical properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 962-969 | |
24 | CHANG D W, CHOI H J, BAEK J B. Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(14): 7659-7665. |
25 | JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters, 2011, 11(6): 2472-2478. |
26 | LI S M, YANG S Y, WANG Y S, et al. Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid[J]. Carbon, 2013, 59: 418-429. |
27 | 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2): 137-146. |
SU X X,YANG R, LI L, et al. Research progress of preparation of nitrogen-doped graphene and its application in chemical energy storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 137-146 | |
28 | WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential Applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
29 | HULICOVA-JURCAKOVA D, KODAMA M, SHIRAISHI S, et al. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance[J]. Advanced Functional Materials, 2009, 19(11): 1800-1809. |
30 | SCHIROS T S, NORDLUND D N, PALOVA L, et al. Connecting dopant bond type with electronic structure in N-doped graphene[J]. Nano Lett., 2012, 12(8): 4025-4031. |
31 | LI J Y, REN Z Y, ZHOU Y X, et al. Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response[J]. Carbon, 2013, 62: 330-336. |
32 | SUI Y P, ZHU B, ZHANG H R, et al. Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition[J]. Carbon, 2015, 81: 814-820. |
33 | MA R G, REN X D, XIA B Y, et al. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction[J]. Nano Research, 2016, 9(3): 808-819. |
34 | NING X T, ZHONG W B, LI S C, et al. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(23): 8859-8867. |
35 | LIN Z Y, WALLER G H, LIU Y, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013, 2(2): 241-248. |
36 | YEN H F, HORNG Y Y, HU M S, et al. Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors[J]. Carbon, 2015, 82: 124-134. |
37 | YASUDA S, YU L, KIM J, et al. Selective nitrogen doping in graphene for oxygen reduction reactions[J]. Chem. Commun. (Camb), 2013, 49(83): 9627-9635. |
38 | LEE K H, OH J, SON J G, et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6361-6368. |
39 | ZHAO W, HöFERT O, GOTTERBARM K, et al. Production of nitrogen-doped graphene by low-energy nitrogen implantation[J]. The Journal of Physical Chemistry C, 2012, 116(8): 5062-5067. |
40 | SUN J G, WANG L, SONG R R, et al. Enhancing pyridinic nitrogen level in graphene to promote electrocatalytic activity for oxygen reduction reaction[J]. Nanotechnology, 2016, 27(5): 055404. |
41 | CHO Y J, KIM H S, BAIK S Y, et al. Selective nitrogen-doping structure of nanosize graphitic layers[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3737-3744. |
42 | VISHWAKARMA R, KALITA G, SHINDE S M, et al. Structure of nitrogen-doped graphene synthesized by combination of imidazole and melamine solid precursors[J]. Materials Letters, 2016, 177: 89-93. |
43 | ZHONG J, DENG J J, MAO B H, et al. Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy[J]. Carbon, 2012, 50(1): 335-342. |
44 | 沈进冉, 郭翠静, 陈赫, 等. 高性能氮掺杂石墨烯的制备及其储锂性能[J]. 储能科学与技术, 2019, 8(6): 1137-1144. |
SHENG J R, GUO C J, CHEN H, et al. Synthesis and lithium storage property of high-performance N-doped reduced graphene oxide[J]. Energy Storage Science and Technology, 2019, 8(6): 1137-1144. | |
45 | SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogendoped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4357. |
46 | YANG J, JO M R, KANG M, et al. Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors[J]. Carbon, 2014, 73: 106-113. |
47 | LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 6: 1508-1513. |
48 | PU N W, CHEN C Y, QIU H X, et al. Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors[J]. International Journal of Electrochemical Science, 2018: 6812-6823. |
49 | HASSAN F M, CHABOT V, LI J, et al. Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(8): 2904-2912. |
50 | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
LI Z Q, HE W X, ZHANG Y Q, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624 | |
51 | PELS J R, F K, MOULIJN J A, et al. Evolution of nitrogen functionalities in cabonaceous materials during pyrolysis[J]. Carbon, 1995, 33(11): 1641-1643. |
52 | LIN Y P, KSARI Y, AUBEL D, et al. Efficient and low-damage nitrogen doping of graphene via plasma-based methods[J]. Carbon, 2016, 100: 337-344. |
53 | JIANG B J, TIAN C G, WANG L, et al. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction[J]. Applied Surface Science, 2012, 258(8): 3438-3443. |
54 | SAHU V, GROVER S, TULACHAN B, et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon[J]. Electrochimica Acta, 2015, 160: 244-253. |
55 | FAN W, XIA Y Y, TJIU W W, et al. Nitrogen-doped graphene hollow nanospheres as novel electrode materials forsupercapacitor applications[J]. Journal of Power Sources, 2013, 9: 973-981. |
56 | LU Y H, HUANG Y, ZHANG M J, et al. Nitrogen-doped graphene materials for supercapacitor applications[J]. J Nanosci Nanotechnol, 2014, 14(2): 1134-1144. |
57 | LEE Y H, CHANG K H, HU C C. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes[J]. Journal of Power Sources, 2013, 227: 300-307. |
58 | TIAN K, LIU W J, ZHANG S, et al. Improving capacitance by introducing nitrogen species and defects into graphene[J]. ChemElectroChem, 2015, 2(6): 859-866. |
59 | CAO H L, ZHOU X F, QIN Z H, et al. Low-temperature preparation of nitrogen-doped graphene for supercapacitors[J]. Carbon, 2013, 56: 218-223. |
60 | SHI X P, ZHU J Y, ZHANG Y, et al. Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors[J]. RSC Advances, 2015, 5(94): 77130-77136. |
61 | WU Y P, LIU X Y, XIA D D, et al. Synthesis of few-layer N-doped graphene from expandable graphite with melamine and its application in supercapacitors[J]. Chinese Chemical Letters, 2020, 31(2): 559-564. |
62 | MORENO-CASTILLA C, DAWIDZIUK M B, CARRASCO-MARíN F, et al. Electrochemical performance of carbon gels with variable surface chemistry and physics[J]. Carbon, 2012, 50(9): 3324-3332. |
63 | ZHU Z H, HATORI H, WANG S B, et al. Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials[J]. The Journal of Physical Chemistry B, 2005, 109(35): 16744-16752. |
64 | MANPREET K, MANMEET K, K S V. Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment[J]. Advances in Colloid and Interface Science, 2018, 259: 44-64. |
65 | ZHANG L L, ZHAO X, JI H X, et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science, 2012, 5(11): 9618-9625. |
66 | ZHAN C, ZHANG Y, CUMMINGS P T, et al. Enhancing graphene capacitance by nitrogen: Effects of doping configuration and concentration[J]. Phys. Chem. Chem. Phys., 2016, 18(6): 4668-4674. |
[1] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[2] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[3] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[5] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[6] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[7] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[8] | Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 982-990. |
[9] | Zhicheng LIU, Daogang PENG, Huirong ZHAO, Danhao WANG, Yuchen LIU. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal [J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. |
[10] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[11] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[12] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[13] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[14] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[15] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||