Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1668-1677.doi: 10.19799/j.cnki.2095-4239.2020.0171
• Energy Storage Materials and Devices • Previous Articles Next Articles
Dingyu GUO(), Fengjing JIANG(), Zhuhan ZHANG
Received:
2020-05-11
Revised:
2020-05-30
Online:
2020-11-05
Published:
2020-10-28
Contact:
Fengjing JIANG
E-mail:dingyuguo@sjtu.edu.cn;jfjzz@sjtu.edu.cn
CLC Number:
Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677.
1 | DARLING R M, GALLAGHER K G, KOWALSKI J A, et al. Pathways to low-cost electrochemical energy storage: A comparison of aqueous and nonaqueous flow batteries[J]. Energy Environ Sci, 2014, 7(11): 3459-3477. |
2 | SKYLLAS-KAZACOS M. Performance improvements and cost considerations of the vanadium redox flow battery[J]. ECS Transactions, 2019, 89(1): 29-45. |
3 | SOLOVEICHIK G L. Flow batteries: Current status and trends[J]. Chem Rev, 2015, 115(20): 11533-11558. |
4 | ESS I. Cleanest, lowest cost long-duration storage with no capacity degradation[R/OL]. [2020-05-28]. . |
5 | IBANEZ J G, CHOI C S, BECKER R S. Aqueous redox transition metal complexes for electrochemical applications as a function of pH[J]. Journal of the Electrochemical Society, 1987, 134(12): 3083-3089. |
6 | HAWTHORNE K L, WAINRIGHT J S, SAVINELL R F. Studies of iron-ligand complexes for an all-iron flow battery application[J]. Journal of the Electrochemical Society, 2014, 161(10): A1662-A1671. |
7 | HAWTHORNE K L, PETEK T J, MILLER M A, et al. An investigation into factors affecting the iron plating reaction for an all-iron flow battery[J]. Journal of the Electrochemical Society, 2014, 162(1): A108-A113. |
8 | DANILOV F I, PROTSENKO V S, UBIIKON A V. Kinetic regularities governing the reaction of electrodeposition of iron from solutions of citrate complexes of iron(III)[J]. Russian Journal of Electrochemistry, 2004, 41(12): 1282-1289. |
9 | JAYATHILAKE B S, PLICHTA E J, HENDRICKSON M A, et al. Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery[J]. Journal of the Electrochemical Society, 2018, 165(9): A1630-A1638. |
10 | MANOHAR A K, KIM K M, PLICHTA E, et al. A high efficiency iron-chloride redox flow battery for large-scale energy storage[J]. Journal of the Electrochemical Society, 2015, 163(1): A5118-A5125. |
11 | HRUSKA L W, SAVINELL R F. Investigation of factors affecting performance of the iron-redox battery[J]. J Electrochem,1981, 128(1): 18-25. |
12 | JEYAPRABHA C, SATHIYANARAYANAN S, MURALIDHARAN S. Corrosion inhibition of iron in 0.5 mol/L H2SO4 by halide ions[J]. J Braz Chem Soc, 2006, 17(1): 61-67. |
13 | SANECKI P A T, SKITA P M, KACZMARSKI K. The mathematical models of the stripping voltammetry metal deposition/dissolution process[J]. Electrochimica Acta, 2010, 55(5): 1598-1604. |
14 | SONG Y, LI X, YAN C, et al. Unraveling the viscosity impact on volumetric transfer in redox flow batteries[J]. Journal of Power Sources, 2020, 456: doi: 10.1016/j.jpowsour.2020.228004. |
15 | GAO L, ZHOU X, DING Y. Effective thermal and electrical conductivity of carbon nanotube composites[J]. Chemical Physics Letters, 2007, 434(4/5/6): 297-300. |
16 | YOUSSRY M, MADEC L C, SOUDAN P, et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: Rheology and simultaneous rheo-electrical behavior[J]. Physical Chemistry Chemical Physics, 2013, 15(34): doi: 10.1039/C3CP51371H. |
17 | DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1(4): 511-516. |
18 | MADEC L, YOUSSRY M, CERBELAUD M. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5): A693-A699. |
19 | HOYT N C, WAINRIGHT J S, SAVINELL R F. Mathematical modeling of electrochemical flow capacitors[J]. Journal of the Electrochemical Society, 2015, 162(4): A652-A657. |
20 | VISWANATHAN V, CRAWFORD A, STEPHENSON D, et al. Cost and performance model for redox flow batteries[J]. Journal of Power Sources, 2014, 247: 1040-1051. |
21 | PETEK T J, HOYT N C, SAVINELL R F, et al. Slurry electrodes for iron plating in an all-iron flow battery[J]. Journal of Power Sources, 2015, 294,620-6. |
22 | PETEK T J, HOYT N C, SAVINELL R F, et al. Characterizing slurry electrodes using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2016, 163(1): A5001-A5009. |
23 | CHEN Y W, SANTHANAM K S. Solution redox couples for electrochemical energy storage[J]. Journal of the Electrochemical Society, 1981, 128(7): doi: 10.1149/1.2127663. |
24 | MURTHY A S N, SRIVASTAVA T. Fe(III)/Fe(II) - ligand systems for use as negative half-cells in redox-flow cells[J]. Journal of Power Sources, 1989, 27(2): 119-126. |
25 | WEN Y H, ZHANG H M, QIAN P, et al. Studies on iron (Fe3+/Fe2+-complex/bromine (Br2/Br-) redox flow cell in sodium acetate solution[J]. Journal of the Electrochemical Society, 2006, 153(5): A929-A934. |
26 | WATERS S E, ROBB B H, MARSHAK M P. Effect of chelation on iron-chromium redox flow batteries[J]. ACS Energy Letters, 2020: 1758-1762. |
27 | WANG H, LIANG Y, GONG M, et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials[J]. Nat Commun, 2012, 3(6): doi: 10.1038/ncomms1921. |
28 | JAYALAKSHMI N. Developmental studies on porous iron electrodes for the nickel_iron cell[J]. Journal of Power Sources, 1990, 32(4): 341-351. |
29 | KALAIGNAN G P, MURALIDHARAN V S, VASU K I. Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions[J]. Journal of Applied Electrochemistry, 1987, 17(5): 1083-1092. |
30 | GUZMÁN R S S, VILCHE J R, ARVÍA A J. The potentiodynamic behaviour of iron in alkaline solutions[J]. Electrochimica Acta, 1979, 24(4): 395-403. |
31 | MURALIDHARAN V S, VEERASHANMUGAMANI M. Electrochemical behaviour of pure iron in concentrated sodium hydroxide solutions at different temperatures: A triangular potential sweep voltammetric study[J]. Journal of Applied Electrochemistry, 1985, 15(5): 675-683. |
32 | 王立民. 镍铁电池的工业应用及最新研究进展[J]. 应用化学, 2014, 31(7): doi: 10.3724/SP.J.1095.2014.30353. |
WANG L M. Industrial application and latest research progress of nickel-iron battery[J]. Applied Chemistry, 2014, 31(7): doi: 10.3724/SP.J.1095.2014.30353. | |
33 | KAO C Y, CHOU K S. Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery[J]. Journal of Power Sources, 2010, 195(8): 2399-2404. |
34 | BAN C, WU Z, GILLASPIE D T, et al. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode[J]. Adv Mater, 2010, 22(20): E145-149. |
35 |
PIAO Y, KIM H, SUNG Y E, et al. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries[J]. Chemical Communications, 2010, doi: 10.1039/b920037a.
doi: 10.1039/b920037a |
36 | ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Advanced Functional Materials, 2008, 18(24): 3941-3946. |
37 | WU X, WU H B, XIONG W, et al. Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery[J]. Nano Energy, 2016, 30: 217-224. |
38 | UJIMINE K, TSUTSUMI A. Electrochemical characteristics of iron carbide as an active material in alkaline batteries[J]. Journal of Power Sources, 2006, 160(2): 1431-1435. |
39 | WEI L, WU M C, ZHAO T S, et al. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage[J]. Applied Energy, 2018, 215: 98-105. |
40 | LI Z, WENG G, ZOU Q, et al. A high-energy and low-cost polysulfide/iodide redox flow battery[J]. Nano Energy, 2016, 30: 283-292. |
41 |
JIANG F, HE Z, GUO D, et al. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, doi: 10.1016/j.jpowsour.2019.227114.
doi: 10.1016/j.jpowsour.2019.227114 |
42 | ARENAS L F, PONCE D L C, WALSH F C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage[J]. Journal of Energy Storage, 2017, 11: 119-153. |
43 |
ZHU J, LI L, XIONG Z H, et al. Evolution of useless iron rust into uniform α-Fe2O3 nanospheres: A smart way to make sustainable anodes for hybrid Ni-Fe cell devices[J]. ACS Sustainable Chemistry & Engineering, 2016, doi: 10.1021/acssuschemeng.6b01527.
doi: 10.1021/acssuschemeng.6b01527 |
44 | HANG B T, WATANABE T, EGASHIRA M, et al. The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode[J]. Journal of Power Sources, 2006, 155(2): 461-469. |
45 | SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): R55-R79. |
46 | VIJAYAMOHANAN K, BALASUBRAMANIAN T S, SHUKLA A K. Rechargeable alkaline iron electrodes[J]. Journal of Power Sources, 1991, 34(3): 269-285. |
47 | CALDAS C A, LOPES M C, CARLOS I A. The role of FeS and (NH4)2CO3 additives on the pressed type Fe electrode[J]. Journal of Power Sources, 1998, 74(1): 108-112. |
48 | VIJAYAMOHANAN K, SHUKIA A K, SATHYANARAYANA S. Role of sulphide additives on the performance of alkaline iron electrodes[J]. Journal of Electroanalytical Chemistry, 1990, 289(1/2): 55-68. |
49 | CARTA R, DERNINI S, POLCARO A M, et al. The influence of sulphide environment on hydrogen evolution at a stainless steel cathode in alkaline solution[J]. Cheminform, 1988, 257(1/2): 257-268. |
50 | MANOHAR A K, MALKHANDI S, YANG B, et al. A high-performance rechargeable iron electrode for large-scale battery-based energy storage[J]. Journal of the Electrochemical Society, 2012, 159(8): A1209-A1214. |
51 | MANOHAR A K, YANG C, MALKHANDI S, et al. Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives[J]. Journal of the Electrochemical Society, 2013, 160(11): A2078-A2084. |
52 | GABE D R. The role of hydrogen in metal electrodeposition processes[J]. Journal of Applied Electrochemistry, 1997, 27(8): 908-915. |
53 | BO Y, MALKHANDI S, MANOHAR A K, et al. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage[J]. Energy & Environmental Science, 2014, 7(8): 2753-2763. |
54 | MALKHANDI S, YANG B, MANOHAR A K, et al. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. J Am Chem Soc, 2013, 135(1): 347-353. |
55 | WEN Y H, ZHANG H M, QIAN P, et al. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application[J]. Electrochimica Acta, 2006, 51(18): 3769-3775. |
56 | GONG K, XU F, GRUNEWALD J B, et al. All-soluble all-iron aqueous redox-flow battery[J]. ACS Energy Letters, 2016, 1(1): 89-93. |
57 | LIN K, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
58 | HUSKINSON B, MARSHAK M P, SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
59 | YUAN Z, LIU X, XU W, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nat Commun, 2018, 9(1): doi: 10.1038/s41467-018-06209-x. |
60 | YAMAGUCHI T, BOETJE L M, KOVAL C A, et al. Transport properties of carbon dioxide through amine functionalized carrier membranes[J]. Industrial & Engineering Chemistry Research, 1995, 34(11): 4071-4077. |
61 | YAMAGUCHI T, KOVAL C A, NOBLE R D, et al. Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier[J]. Chemical Engineering Science, 1996, 51(21): 4781-4789. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[3] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[10] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[11] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[12] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[13] | Xu HU, Han JIANG, Rui ZHANG. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[14] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[15] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||