Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (4): 1093-1102.doi: 10.19799/j.cnki.2095-4239.2021.0496
• Special issue of International Outstanding Young Scientists for Energy Storage • Previous Articles Next Articles
Haiyan HU1(), Shulei CHOU1, Yao XIAO1,2()
Received:
2021-09-23
Revised:
2021-09-29
Online:
2022-04-05
Published:
2022-04-11
Contact:
Yao XIAO
E-mail:huhaiyan@wzu.edu.cn;xiaoyao@wzu.edu.cn
CLC Number:
Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102.
Fig. 4
Electrochemical performance of O3-NaNS electrode: [(a), (b)] Specific capacity and coulombic efficiency in voltage range of 2~4 V at various rates corresponding galvanostatic charge/discharge curves versus specific capacity; [(c), (d)] Galvanostatic charge/discharge curves versus specific energy in voltage range of 2~4 V at various rates and corresponding midpoint voltage and energy efficiency; (e) Cycling performance during 100 cycles at 1 C"
Table 3
Comparison of midpoint voltage of various reported sodium-ion battery cathode materials"
正极材料组成 | 合成方法 | 中值电压/V | 参考文献 |
---|---|---|---|
NaNi0.5Sn0.5O2 | 固相法 | 3.28 | 本文 |
Na0.66Li0.18Mn0.71Ni0.21Co0.08O2+δ | 共沉淀法+固相法 | 3.2 | [ |
Na0.44Co0.1Mn0.9O2 | 热聚合法 | 约2.667 | [ |
Na[Mn0.25Fe0.25Co0.25Ni0.25]O2 | 固相法 | 3.21 | [ |
Na0.9Ni0.45Mn0.55O2 | 溶胶凝胶法 | 3.03 | [ |
Na0.5[Li0.2Fe0.4Mn0.4]O2 | 溶胶凝胶法 | 2.85 | [ |
Na0.67Mn0.97Mo0.03O2 | 固相法 | 2.61 | [ |
Na4FeV(PO4)3 | 溶胶凝胶法 | 3.13 | [ |
Na3Fe2(PO4)(P2O7) | 喷雾干燥法 | 3.1 | [ |
NaFe0.45Co0.5Mg0.05O2 | 固相法 | 3.1 | [ |
Na0.9Cu0.22Fe0.30Mn0.48O2 | 固相法 | 3.2 | [ |
1 | DENG Z, LIN X, HUANG Z Y, et al. Recent progress on advanced imaging techniques for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11(2): doi: 10.1002/aenm.202000806. |
2 | MA Q, ZENG X X, YUE J, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): doi: 10. 1002/aenm.201803854. |
3 | XIAO Y, WANG T, ZHU Y F, et al. Large-scale synthesis of the stable co-free layered oxide cathode by the synergetic contribution of multielement chemical substitution for practical sodium-ion battery[J]. Research, 2020: doi:10.34133/2020/1469301. |
4 | 张祖豪, 丁晓凯, 罗冬, 等. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424. |
ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. | |
5 | JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
6 | ZHU Y F, XIAO Y, HUA W B, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 59(24): 9299-9304. |
7 | 张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. | |
8 | XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019, 9(19): doi: 10.1002/aenm.201803978. |
9 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. | |
10 | ZHANG J X, ZHOU X, WANG Y X, et al. Highly electrochemically-reversible mesoporous Na2FePO4 F/C as cathode material for high-performance sodium-ion batteries[J]. Small, 2019, 15(46): doi: 10.1002/smll.201903723. |
11 | XIAO Y, WANG P F, YIN Y X, et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode[J]. Advanced Materials, 2018, 30(40): doi: 10.1002/adma.201803765. |
12 | CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57(2019): 157-165. |
13 | 任思佳, 田雷武, 邵钦君, 等. 助熔剂法制备单晶LiNi0.8Co0.1Mn0.1O2正极材料[J]. 储能科学与技术, 2020, 9(6): 1702-1713. |
REN S J, TIAN L W, SHAO Q J, et al. Synthesis of single-crystal LiNi0.8Mn0.1O2 by flux method[J]. Energy Storage Science and Technology, 2020, 9(6): 1702-1713. | |
14 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
15 | SUN H H, HWANG J Y, YOON C S, et al. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na(Ni0.65Co0.08Mn0.27)O2 cathode for sodium-ion batteries[J]. ACS Nano, 2018, 12(12): 12912-12922. |
16 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
17 | KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
18 | ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547. |
19 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
20 | 郑薇, 刘琼, 卢周广. 钠离子电池层状过渡金属氧化物中阴离子氧的氧化还原反应活性调控[J]. 储能科学与技术, 2020, 9(5): 1416-1427. |
ZHENG W, LIU Q, LU Z G. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. | |
21 | XIAO Y, WANG P F, YIN Y X, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm.201800492. |
22 | NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600275. |
23 | 张香华, 骆微, 芮先宏, 等. 钠离子电池正极材料VOPO4 ·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415. |
ZHANG X H, LUO W, RUI X H, et al. Preparation and electrochemical performance of VOPO4 ·2H2O nanosheet cathode for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. | |
24 | WANG P F, GUO Y J, DUAN H, et al. Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high voltage layered cathodes for sodium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2715-2722. |
25 | 周思宇, 唐正, 范景瑞, 等. 过渡金属氧化物微纳阵列在钠离子电池中的研究进展[J]. 储能科学与技术, 2020, 9(5): 1383-1395. |
ZHOU S Y, TANG Z Y, FAN J R, et al. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. | |
26 | LUO W, ALLEN M, RAJU V, et al. An organic pigment as a high-performance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(15): doi: 10.1002/aenm.201400554. |
27 | SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450. |
28 | CHEN M Z, CHEN L N, HU Z, et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Advanced Materials, 2017, 29(21): doi: 10.1002/adma. 201605535. |
29 | 闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886. |
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886. | |
30 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): doi: 10.1002/adma.202001419. |
31 | CHEN M Z, HUA W B, XIAO J, et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 59(6): 2449-2456. |
32 | FANG C, HUANG Y, YUAN L X, et al. A metal-organic compound as cathode material with superhigh capacity achieved by reversible cationic and anionic redox chemistry for high-energy sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2017, 56(24): 6793-6797. |
33 | YANG J, TANG M J, LIU H, et al. O3-type layered Ni-rich oxide: A high-capacity and superior-rate cathode for sodium-ion batteries[J]. Small, 2019, 15(52): doi: 10.1002/smll.201905311. |
34 | XIAO Y, ZHU Y F, LI L, et al. Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode[J]. Cell Reports Physical Science, 2021, 2(9): doi: 10.1016/j.xcrp.2021.100547. |
35 | WU X Y, JIN S F, ZHANG Z Z, et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): doi: 10.1126/sciadv.1500330. |
36 | XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): doi: 10. 1002/adfm.202001334. |
37 | 刘欢庆, 高旭, 陈军, 等. 钠离子电池层状氧化物正极: 层间滑移, 相变与性能[J]. 储能科学与技术, 2020, 9(5): 1327-1339. |
LIU H Q, GAO X, CHEN J, et al. Layered oxide cathode for sodium ion batteries: interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. | |
38 | KONG S M, KIM D, LEE K S, et al. Structural and thermodynamic understandings in Mn-based sodium layered oxides during anionic redox[J]. Advanced Science, 2020, 7(16): doi: 10.1002/advs. 202001263. |
39 | SHEN Q Y, ZHAO X D, LIU Y C, et al. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode[J]. Advanced Science, 2020, 7(21): doi: 10.1002/advs.202002199. |
40 | GUO S H, LIU P, YU H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 54(20): 5894-5899. |
41 | GUO S H, YU H J, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy & Environmental Science, 2015, 8(4): 1237-1244. |
42 | XU G L, AMINE R, XU Y F, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1677-1693. |
43 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(4): 81-85. |
44 | XIAO Y, ZHANG X D, ZHU Y F, et al. Suppressing manganese dissolution via exposing stable {111} facets for high-performance lithium-ion oxide cathode[J]. Advanced Science, 2019, 6(13): doi: 10.1002/advs.201801908. |
45 | LI C, GENG F S, HU B W, et al. Anionic redox in Na-based layered oxide cathodes: A review with focus on mechanism studies[J]. Materials Today Energy, 2020, 17(2020):doi:10.1016/j.mtener.2020.100474. |
46 | HOU Y N, LI X, LIU W, et al. ALD derived Fe3+-doping toward high performance P2-Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries[J]. Materials Today Energy, 2019, 14: doi: 10.1016/j.mtener.2019.100353. |
47 | CABANA J, CHERNOVA N A, XIAO J, et al. Study of the transition metal ordering in layered NaxNix/2Mn1- x/2O2 (2/3 ≤ x ≤1) and consequences of Na/Li exchange[J]. Inorganic Chemistry, 2013, 52: 8540-8550. |
48 | CHEN X Q, ZHOU X L, HU M, et al. Stable layered P3/P2-Na0.66Co0. 5Mn0.5O2 cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 20708-20714. |
49 | KUBOTA K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39(5): 416-422. |
50 | KUBOTA K, KOMABA S. Review-practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550. |
51 | RYU H H, HAN G, YU T Y, et al. Enhanced cycling stability of O3-type Na[Ni0.5Mn0.5]O2 cathode through Sn addition for sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(12): 6593-6600. |
52 | 刘冬冬, 徐守冬, 史文静, 等. 草酸前驱体法制备高性能钠离子电池正极材料 NaNi0.5Mn0.5O2[J]. 人工晶体学报, 2016, 45(8): 2101-2107. |
LIU D D, XU S D, SHI W J, et al. Preparation of NaNi0.5Mn0.5O2 with high-performance as cathode material for sodium ion batteries[J]. Journal of Synthetic Crystals, 2016, 45(8): 2101-2107. | |
53 | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591. |
54 | WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5Mn0.5- xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19): doi: 10. 1002/adma.201700210. |
55 | YAO H-R, WANG P-F, GONG Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(25): 8440-8443. |
56 | WANG P F, XIN H, ZUO T T, et al. An abnormal 3. 7 Volt O3-type sodium-ion battery cathode[J]. Angewandte Chemie-International Edition, 2018, 57(27): 8178-8183. |
57 | KANG W, ZHANG Z, LEE P-K, et al. Copper substituted P2-type Na0.67CuxMn1- xO2: A stable high-power sodium-ion battery cathode[J]. Journal of Materials Chemistry A, 2015, 3(45): 22846-22852. |
58 | BUCHER N, HARTUNG S, FRANKLIN J B, et al. P2-NaxCoyMn1- yO2 (y=0, 0.1) as cathode materials in sodium-ion batteries—effects of doping and morphology to enhance cycling stability[J]. Chemistry of Materials, 2016, 28(7): 2041-2051. |
59 | MENG Y M, AN J, CHEN L, et al. A NaNi0.5Mn0.5SnxO2 cathode with anti-structural deformation enhancing long lifespan and super power for a sodium ion battery[J]. Chemical Communications, 2020, 56(58): 8079-8082. |
60 | SATHIYA M, JACQUET Q, DOUBLET M L, et al. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702599. |
61 | XIAO Y, ZHU Y F, XIANG W, et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode[J]. Angewandte Chemie-International Edition, 2020, 59(4): 1491-1495. |
62 | LI X, WU D, ZHOU Y N, et al. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries[J]. Electrochemistry Communications, 2014, 49(2014): 51-54. |
63 | CHEN J, LI L, WU L, et al. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries[J]. Journal of Power Sources, 2018, 406(2018): 110-117. |
64 | VEERASUBRAMANI G K, SUBRAMANIAN Y, PARK M S, et al. Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode[J]. Electrochimica Acta, 2019, 296(2019): 1027-1034. |
65 | ZHANG L, WANG C, LIU Y, et al. Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 426: doi:10.1016/j.cej.2021.130813. |
66 | HADOUCHI M, YAQOOB N, KAGHAZCHI P, et al. Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries[J]. Energy Storage Materials, 2021, 35(2021): 192-202. |
67 | CAO Y, YANG C, LIU Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries[J]. ACS Energy Letters, 2020, 5(12): 3788-3796. |
68 | YAO H R, WANG P F, WANG Y, et al. Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700189. |
69 | MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[3] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[4] | Weicheng SHEN, Wenxi ZHEN, Chong SHAO, Qi XIE. Coordinated fault ride through strategy for doubly fed induction generator using a superconducting magnetic energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 136-146. |
[5] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[6] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
[7] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. |
[8] | KONG Lingli, ZHANG Kejun, CAI Jiaxing, LI Fuxuan. Analysis and improvement of interval cycle life for high voltage lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(3): 964-968. |
[9] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[10] | CHE Haiying, YU Yan, YANG Xinrong, LIAO Xiaozhen, LI Linsen, DENG Yonghong, MA Zifeng. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates [J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. |
[11] | KONG Lily, ZHANG Kejun, XIA Xiaomeng, CAI Jiaxing, SUN Jie, YANG Yuqiu. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170. |
[12] | GUO Shen, WANG Peng, ZHANG Jichuan, LUAN Wenpeng, YU Jie, HE Zhizhu. An overview of electromagnetic energy collection and storage technologies for a high voltage transmission system [J]. Energy Storage Science and Technology, 2019, 8(1): 32-46. |
[13] | TIAN Liyuan, JU Xiaoxia, XIANG Feng, ZHOU Ming. Recent research progress of metal compounds as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1211-1216. |
[14] | LI Fangfang, CHEN Shimou. Research progress on electrolyte additives for high voltage lithium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(4): 436-442. |
[15] | ZHU Na, WU Feng, WU Chuan, BAI Ying, LI Yitong. Recent advances of electrolytes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 285-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||